## Abstract

We propose a new type of scanning fluorescence microscope capable of resolving 35 nm in the far field. We overcome the diffraction resolution limit by employing stimulated emission to inhibit the fluorescence process in the outer regions of the excitation point-spread function. In contrast to near-field scanning optical microscopy, this method can produce three-dimensional images of translucent specimens.

© 1994 Optical Society of America

Full Article |

PDF Article
### Equations (1)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\begin{array}{l}\frac{\text{d}{n}_{0}}{\text{d}t}={h}_{\text{exc}}{\sigma}_{01}({n}_{1}-{n}_{0})+\frac{1}{{\tau}_{\text{vibr}}}{n}_{3},\\ \frac{\text{d}{n}_{1}}{\text{d}t}={h}_{\text{exc}}{\sigma}_{01}({n}_{0}-{n}_{1})-\frac{1}{{\tau}_{\text{vibr}}}{n}_{1},\\ \frac{\text{d}{n}_{2}}{\text{d}t}=\frac{1}{{\tau}_{\text{vibr}}}{n}_{1}+{h}_{\text{STED}}{\sigma}_{23}({n}_{3}-{n}_{2})-\left(\frac{1}{{\tau}_{\text{fluor}}}+Q\right){n}_{2},\\ \frac{\text{d}{n}_{3}}{\text{d}t}={h}_{\text{STED}}{\sigma}_{23}({n}_{2}-{n}_{3})+\left(\frac{1}{{\tau}_{\text{fluor}}}+Q\right){n}_{2}-\frac{1}{{\tau}_{\text{vibr}}}{n}_{3},\end{array}$$