Abstract

We demonstrate a new pulse-shaping technique, using an acousto-optic modulator as a spatial modulator in a zero-dispersion delay line. Compared with existing techniques, this approach simplifies optical alignment and dramatically improves update rates. It should also improve flexibility for generating complex waveforms.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, R. N. Thurston, W. J. Tomlinson, J. P. Heritage, D. E. Leaird, E. M. Kirschener, Opt. Lett. 14, 868 (1989); A. M. Weiner, J. P. Heritage, R. N. Thurston, Opt. Lett. 11, 153 (1986); A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, Opt. Lett. 15, 326 (1990); A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum Electron. 28, 908 (1992).
    [CrossRef] [PubMed]
  2. M. Haner, W. S. Warren, Phys. Rev. B 41, 5792 (1990); Appl. Phys. Lett. 52, 1458 (1988); Opt. Lett. 12, 398 (1987).
    [CrossRef] [PubMed]
  3. K. Ema, F. Shimizu, Jpn. J. Appl. Phys.Pt. 2 29, 631 (1990); A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
    [CrossRef]
  4. W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993); S. Rice, Science 258, 412 (1992).
    [CrossRef] [PubMed]
  5. D. Goswami, W. S. Warren, J. Chem. Phys. 99, 4509 (1993); S. Chelkowski, A. D. Bandrauk, P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
    [CrossRef] [PubMed]
  6. M. Wefers, K. Nelson, Opt. Lett. 18, 2032 (1993).
    [CrossRef] [PubMed]
  7. W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5856 (1981); C. P. Lin, J. Bates, J. Mayer, W. S. Warren, J. Chem. Phys. 86, 3750 (1987).
    [CrossRef]
  8. M. E. Fermann, V. da Silva, D. A. Smith, Y. Silberberg, A. M. Weiner, Opt. Lett. 18, 1505 (1993).
    [CrossRef] [PubMed]

1993 (4)

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993); S. Rice, Science 258, 412 (1992).
[CrossRef] [PubMed]

D. Goswami, W. S. Warren, J. Chem. Phys. 99, 4509 (1993); S. Chelkowski, A. D. Bandrauk, P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef] [PubMed]

M. E. Fermann, V. da Silva, D. A. Smith, Y. Silberberg, A. M. Weiner, Opt. Lett. 18, 1505 (1993).
[CrossRef] [PubMed]

M. Wefers, K. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef] [PubMed]

1990 (2)

M. Haner, W. S. Warren, Phys. Rev. B 41, 5792 (1990); Appl. Phys. Lett. 52, 1458 (1988); Opt. Lett. 12, 398 (1987).
[CrossRef] [PubMed]

K. Ema, F. Shimizu, Jpn. J. Appl. Phys.Pt. 2 29, 631 (1990); A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

1989 (1)

1981 (1)

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5856 (1981); C. P. Lin, J. Bates, J. Mayer, W. S. Warren, J. Chem. Phys. 86, 3750 (1987).
[CrossRef]

da Silva, V.

Dahleh, M.

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993); S. Rice, Science 258, 412 (1992).
[CrossRef] [PubMed]

Ema, K.

K. Ema, F. Shimizu, Jpn. J. Appl. Phys.Pt. 2 29, 631 (1990); A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Fermann, M. E.

Goswami, D.

D. Goswami, W. S. Warren, J. Chem. Phys. 99, 4509 (1993); S. Chelkowski, A. D. Bandrauk, P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef] [PubMed]

Haner, M.

M. Haner, W. S. Warren, Phys. Rev. B 41, 5792 (1990); Appl. Phys. Lett. 52, 1458 (1988); Opt. Lett. 12, 398 (1987).
[CrossRef] [PubMed]

Heritage, J. P.

Kirschener, E. M.

Leaird, D. E.

Nelson, K.

Rabitz, H.

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993); S. Rice, Science 258, 412 (1992).
[CrossRef] [PubMed]

Shimizu, F.

K. Ema, F. Shimizu, Jpn. J. Appl. Phys.Pt. 2 29, 631 (1990); A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Silberberg, Y.

Smith, D. A.

Thurston, R. N.

Tomlinson, W. J.

Warren, W. S.

D. Goswami, W. S. Warren, J. Chem. Phys. 99, 4509 (1993); S. Chelkowski, A. D. Bandrauk, P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993); S. Rice, Science 258, 412 (1992).
[CrossRef] [PubMed]

M. Haner, W. S. Warren, Phys. Rev. B 41, 5792 (1990); Appl. Phys. Lett. 52, 1458 (1988); Opt. Lett. 12, 398 (1987).
[CrossRef] [PubMed]

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5856 (1981); C. P. Lin, J. Bates, J. Mayer, W. S. Warren, J. Chem. Phys. 86, 3750 (1987).
[CrossRef]

Wefers, M.

Weiner, A. M.

Zewail, A. H.

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5856 (1981); C. P. Lin, J. Bates, J. Mayer, W. S. Warren, J. Chem. Phys. 86, 3750 (1987).
[CrossRef]

J. Chem. Phys. (2)

D. Goswami, W. S. Warren, J. Chem. Phys. 99, 4509 (1993); S. Chelkowski, A. D. Bandrauk, P. B. Corkum, Phys. Rev. Lett. 65, 2355 (1990).
[CrossRef] [PubMed]

W. S. Warren, A. H. Zewail, J. Chem. Phys. 75, 5856 (1981); C. P. Lin, J. Bates, J. Mayer, W. S. Warren, J. Chem. Phys. 86, 3750 (1987).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Ema, F. Shimizu, Jpn. J. Appl. Phys.Pt. 2 29, 631 (1990); A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, IEEE J. Quantum Electron. 28, 2251 (1992).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

M. Haner, W. S. Warren, Phys. Rev. B 41, 5792 (1990); Appl. Phys. Lett. 52, 1458 (1988); Opt. Lett. 12, 398 (1987).
[CrossRef] [PubMed]

Science (1)

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993); S. Rice, Science 258, 412 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Apparatus for programmable femtosecond pulse shaping by use of spatial dispersion: (a) the conventional approach, which uses multielement LCM’s to alter the phase and the amplitude of the pulse spectrum; (b) our approach, which uses an AOM. The advantages are much easier alignment, removal of artifacts from pixel gaps, and substantially faster update rates.

Fig. 2
Fig. 2

Cross correlation resulting from a rf waveform that is (a) pair of 40-ns pulses separated by 40 ns, (b) four 40-ns pulses separated by 30 ns, (c) eleven 40-ns pulses separated by 60 ns. The solid curves are experimental data, and the dashed curves are theoretical data. The slight asymmetry in all our experimental data at long times is a simple instrument artifact; to produce a detectable signal from the unamplified pulses we used a 15-μm spot size in the cross-correlation apparatus, which was thus sensitive to alignment.

Fig. 3
Fig. 3

Cross correlation resulting from a rf waveform that is (a) the square if a sinc function, 20-ns FWHM; (b) the square of a sinc function, 45-ns FWHM; (c) a concave upward parabola that is zero at time zero and cuts off at ±50 ns. The solid curves are experimental data, and the dashed curves are theoretical data.

Metrics