Abstract

We report the generation of 30-W peak-power 250-fs-wide pedestal-free optical pulses at 1.54 μm by use of a chirp-compensated optically amplified semiconductor laser followed by simultaneous soliton compression and shaping within a nonlinear optical loop mirror. A weak controllable attenuation is inserted within the loop to permit precise control of the pulse shape. Pedestal-free pulses are obtained after optimization of both the fiber length and the power balance between the counterpropagating pulses within the loop. The corresponding spectrum reveals a twofold split structure that is due to a residual chirp from self-phase modulation.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), Chap. 6, pp. 164–171.
  4. R. H. Stolen, J. Botineau, A. Ashkin, Opt. Lett. 7, 512 (1982).
    [CrossRef] [PubMed]
  5. J. L. Tapié, G. Mourou, Opt. Lett. 17, 136 (1992).
    [CrossRef] [PubMed]
  6. N. J. Doran, D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  7. K. Smith, N. J. Doran, P. G. J. Wigley, Opt. Lett. 15, 1294 (1990).
    [CrossRef] [PubMed]
  8. K. Smith, E. J. Greer, N. J. Doran, D. M. Bird, K. H. Cameron, Opt. Lett. 17, 408 (1992).
    [CrossRef] [PubMed]
  9. K. J. Blow, N. J. Doran, B. K. Nayar, Opt. Lett. 14, 754 (1989).
    [CrossRef] [PubMed]
  10. K. Smith, N. J. Doran, P. G. J. Wigley, in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper CFH4.
  11. M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, J. R. Simpson, Opt. Lett. 14, 811 (1989).
    [CrossRef] [PubMed]
  12. C. Kazmierski, D. Robein, D. Mathoorasing, J. Lightwave Technol. 10, 1935 (1992).
    [CrossRef]
  13. L. Chusseau, C. Kazmierski, IEEE Photon. Technol. Lett. (to be published).
  14. D. Marcuse, Appl. Opt. 19, 1653 (1980).
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Opt. Lett. 15, 224 (1990).
    [CrossRef] [PubMed]

1992

1990

1989

1988

1983

1982

1980

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

D. Marcuse, Appl. Opt. 19, 1653 (1980).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, Opt. Lett. 15, 224 (1990).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), Chap. 6, pp. 164–171.

Ashkin, A.

Bird, D. M.

Blow, K. J.

Botineau, J.

Cameron, K. H.

Chusseau, L.

L. Chusseau, C. Kazmierski, IEEE Photon. Technol. Lett. (to be published).

Doran, N. J.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Greer, E. J.

Islam, M. N.

Kazmierski, C.

C. Kazmierski, D. Robein, D. Mathoorasing, J. Lightwave Technol. 10, 1935 (1992).
[CrossRef]

L. Chusseau, C. Kazmierski, IEEE Photon. Technol. Lett. (to be published).

Marcuse, D.

Mathoorasing, D.

C. Kazmierski, D. Robein, D. Mathoorasing, J. Lightwave Technol. 10, 1935 (1992).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Mourou, G.

Nayar, B. K.

Pleibel, W.

Robein, D.

C. Kazmierski, D. Robein, D. Mathoorasing, J. Lightwave Technol. 10, 1935 (1992).
[CrossRef]

Simpson, J. R.

Smith, K.

K. Smith, E. J. Greer, N. J. Doran, D. M. Bird, K. H. Cameron, Opt. Lett. 17, 408 (1992).
[CrossRef] [PubMed]

K. Smith, N. J. Doran, P. G. J. Wigley, Opt. Lett. 15, 1294 (1990).
[CrossRef] [PubMed]

K. Smith, N. J. Doran, P. G. J. Wigley, in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper CFH4.

Stolen, R. H.

Sunderman, E. R.

Tapié, J. L.

Tomlinson, W. J.

Wigley, P. G. J.

K. Smith, N. J. Doran, P. G. J. Wigley, Opt. Lett. 15, 1294 (1990).
[CrossRef] [PubMed]

K. Smith, N. J. Doran, P. G. J. Wigley, in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper CFH4.

Wood, D.

Appl. Opt.

J. Lightwave Technol.

C. Kazmierski, D. Robein, D. Mathoorasing, J. Lightwave Technol. 10, 1935 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989), Chap. 6, pp. 164–171.

K. Smith, N. J. Doran, P. G. J. Wigley, in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper CFH4.

L. Chusseau, C. Kazmierski, IEEE Photon. Technol. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental arrangement. CG, comb generator; MQW DFB LD, multiple-quantum-well distributed-feedback laser diode; NDF, normally dispersive fiber [D = −18.2 ps/(nm km) at 1.54 μm]; PC’s, polarization controllers; EDFA’s, Er3+-doped fiber amplifiers; F, filter; CA, controllable attenuation; DSF, low-birefringence dispersion-shifted fiber [D = 1.71 ps/(nm km) at 1.54 μm].

Fig. 2
Fig. 2

Measured pulse widths deduced from autocorrelation trace widths, assuming a sech2 pulse shape (diamonds) and average output power switched at the NOLM output (triangles) as a function of the attenuation introduced within the loop. The three arrows labeled a, b, and c refer to the corresponding cases in Figs. 3(a), 3(b), and 3(c).

Fig. 3
Fig. 3

Background-free intensity autocorrelation traces (left-hand side) and spectra (right-hand side) of the three cases labeled in Fig. 2. Every autocorrelation trace reaches the background level at its extremities. Vertical scales of spectra curves are linear. The optimum pedestal suppression is obtained in (b) with a 380-fs autocorrelation FWHM, i.e., a 250-fs FWHM sech2 pulse.

Metrics