Abstract

The transmittance of an anodic alumina film changes significantly with the refractive index of the guest material that is contained in columnar pores. We fabricated a channel waveguide with a Y junction in an alumina film by filling the pores with photocurable resins of suitable refractive indices.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Granqvist, Å. Andersson, O. Hunderi, Appl. Phys. Lett. 35, 268 (1979).
    [CrossRef]
  2. A. Scherer, O. T. Inal, Thin Solid Films 101, 311 (1983).
    [CrossRef]
  3. R. D. Patel, M. G. Takwale, V. K. Nagar, V. G. Bhide, Thin Solid Films 115, 169 (1984).
    [CrossRef]
  4. J. Blain, C. LeBel, R. G. Saint-Jacques, F. Rheault, J. Appl. Phys. 58, 490 (1985).
    [CrossRef]
  5. T. Pavlovic, A. Ignatiev, Thin Solid Films 138, 97 (1986).
    [CrossRef]
  6. T. Seki, M. Saito, M. Miyagi, Trans. Inst. Electr. Inform. Commun. Eng. E 74, 3861 (1991).
  7. K. Takano, M. Saito, M. Miyagi, “Cube polarizers by the use of metal particles in anodic alumina films,” Appl. Opt. (to be published).
  8. M. Saito, S. Nakamura, M. Miyagi, “Light scattering by liquid crystals in columnar micropores,” J. Appl. Phys. (to be published).
  9. M. Saito, M. Miyagi, J. Opt. Soc. Am. A 6, 1895 (1989).
    [CrossRef]
  10. M. Saito, M. Kumagai, M. Miyagi, K. Wada, Appl. Opt. 30, 2257 (1991).
    [CrossRef] [PubMed]
  11. L. F. Huang, M. Saito, M. Miyagi, K. Wada, Appl. Opt. 32, 2039 (1993).
    [CrossRef] [PubMed]
  12. S. Nakamura, M. Saito, L. F. Huang, M. Miyagi, K. Wada, Jpn. J. Appl. Phys. 31, 3589 (1992).
    [CrossRef]
  13. O. Wiener, Abh. Math. Phys. Kl. Saechs. Akad. Wiss. 32, 507 (1912).

1993 (1)

1992 (1)

S. Nakamura, M. Saito, L. F. Huang, M. Miyagi, K. Wada, Jpn. J. Appl. Phys. 31, 3589 (1992).
[CrossRef]

1991 (2)

T. Seki, M. Saito, M. Miyagi, Trans. Inst. Electr. Inform. Commun. Eng. E 74, 3861 (1991).

M. Saito, M. Kumagai, M. Miyagi, K. Wada, Appl. Opt. 30, 2257 (1991).
[CrossRef] [PubMed]

1989 (1)

1986 (1)

T. Pavlovic, A. Ignatiev, Thin Solid Films 138, 97 (1986).
[CrossRef]

1985 (1)

J. Blain, C. LeBel, R. G. Saint-Jacques, F. Rheault, J. Appl. Phys. 58, 490 (1985).
[CrossRef]

1984 (1)

R. D. Patel, M. G. Takwale, V. K. Nagar, V. G. Bhide, Thin Solid Films 115, 169 (1984).
[CrossRef]

1983 (1)

A. Scherer, O. T. Inal, Thin Solid Films 101, 311 (1983).
[CrossRef]

1979 (1)

C. G. Granqvist, Å. Andersson, O. Hunderi, Appl. Phys. Lett. 35, 268 (1979).
[CrossRef]

1912 (1)

O. Wiener, Abh. Math. Phys. Kl. Saechs. Akad. Wiss. 32, 507 (1912).

Andersson, Å.

C. G. Granqvist, Å. Andersson, O. Hunderi, Appl. Phys. Lett. 35, 268 (1979).
[CrossRef]

Bhide, V. G.

R. D. Patel, M. G. Takwale, V. K. Nagar, V. G. Bhide, Thin Solid Films 115, 169 (1984).
[CrossRef]

Blain, J.

J. Blain, C. LeBel, R. G. Saint-Jacques, F. Rheault, J. Appl. Phys. 58, 490 (1985).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist, Å. Andersson, O. Hunderi, Appl. Phys. Lett. 35, 268 (1979).
[CrossRef]

Huang, L. F.

L. F. Huang, M. Saito, M. Miyagi, K. Wada, Appl. Opt. 32, 2039 (1993).
[CrossRef] [PubMed]

S. Nakamura, M. Saito, L. F. Huang, M. Miyagi, K. Wada, Jpn. J. Appl. Phys. 31, 3589 (1992).
[CrossRef]

Hunderi, O.

C. G. Granqvist, Å. Andersson, O. Hunderi, Appl. Phys. Lett. 35, 268 (1979).
[CrossRef]

Ignatiev, A.

T. Pavlovic, A. Ignatiev, Thin Solid Films 138, 97 (1986).
[CrossRef]

Inal, O. T.

A. Scherer, O. T. Inal, Thin Solid Films 101, 311 (1983).
[CrossRef]

Kumagai, M.

LeBel, C.

J. Blain, C. LeBel, R. G. Saint-Jacques, F. Rheault, J. Appl. Phys. 58, 490 (1985).
[CrossRef]

Miyagi, M.

L. F. Huang, M. Saito, M. Miyagi, K. Wada, Appl. Opt. 32, 2039 (1993).
[CrossRef] [PubMed]

S. Nakamura, M. Saito, L. F. Huang, M. Miyagi, K. Wada, Jpn. J. Appl. Phys. 31, 3589 (1992).
[CrossRef]

M. Saito, M. Kumagai, M. Miyagi, K. Wada, Appl. Opt. 30, 2257 (1991).
[CrossRef] [PubMed]

T. Seki, M. Saito, M. Miyagi, Trans. Inst. Electr. Inform. Commun. Eng. E 74, 3861 (1991).

M. Saito, M. Miyagi, J. Opt. Soc. Am. A 6, 1895 (1989).
[CrossRef]

M. Saito, S. Nakamura, M. Miyagi, “Light scattering by liquid crystals in columnar micropores,” J. Appl. Phys. (to be published).

K. Takano, M. Saito, M. Miyagi, “Cube polarizers by the use of metal particles in anodic alumina films,” Appl. Opt. (to be published).

Nagar, V. K.

R. D. Patel, M. G. Takwale, V. K. Nagar, V. G. Bhide, Thin Solid Films 115, 169 (1984).
[CrossRef]

Nakamura, S.

S. Nakamura, M. Saito, L. F. Huang, M. Miyagi, K. Wada, Jpn. J. Appl. Phys. 31, 3589 (1992).
[CrossRef]

M. Saito, S. Nakamura, M. Miyagi, “Light scattering by liquid crystals in columnar micropores,” J. Appl. Phys. (to be published).

Patel, R. D.

R. D. Patel, M. G. Takwale, V. K. Nagar, V. G. Bhide, Thin Solid Films 115, 169 (1984).
[CrossRef]

Pavlovic, T.

T. Pavlovic, A. Ignatiev, Thin Solid Films 138, 97 (1986).
[CrossRef]

Rheault, F.

J. Blain, C. LeBel, R. G. Saint-Jacques, F. Rheault, J. Appl. Phys. 58, 490 (1985).
[CrossRef]

Saint-Jacques, R. G.

J. Blain, C. LeBel, R. G. Saint-Jacques, F. Rheault, J. Appl. Phys. 58, 490 (1985).
[CrossRef]

Saito, M.

L. F. Huang, M. Saito, M. Miyagi, K. Wada, Appl. Opt. 32, 2039 (1993).
[CrossRef] [PubMed]

S. Nakamura, M. Saito, L. F. Huang, M. Miyagi, K. Wada, Jpn. J. Appl. Phys. 31, 3589 (1992).
[CrossRef]

T. Seki, M. Saito, M. Miyagi, Trans. Inst. Electr. Inform. Commun. Eng. E 74, 3861 (1991).

M. Saito, M. Kumagai, M. Miyagi, K. Wada, Appl. Opt. 30, 2257 (1991).
[CrossRef] [PubMed]

M. Saito, M. Miyagi, J. Opt. Soc. Am. A 6, 1895 (1989).
[CrossRef]

K. Takano, M. Saito, M. Miyagi, “Cube polarizers by the use of metal particles in anodic alumina films,” Appl. Opt. (to be published).

M. Saito, S. Nakamura, M. Miyagi, “Light scattering by liquid crystals in columnar micropores,” J. Appl. Phys. (to be published).

Scherer, A.

A. Scherer, O. T. Inal, Thin Solid Films 101, 311 (1983).
[CrossRef]

Seki, T.

T. Seki, M. Saito, M. Miyagi, Trans. Inst. Electr. Inform. Commun. Eng. E 74, 3861 (1991).

Takano, K.

K. Takano, M. Saito, M. Miyagi, “Cube polarizers by the use of metal particles in anodic alumina films,” Appl. Opt. (to be published).

Takwale, M. G.

R. D. Patel, M. G. Takwale, V. K. Nagar, V. G. Bhide, Thin Solid Films 115, 169 (1984).
[CrossRef]

Wada, K.

Wiener, O.

O. Wiener, Abh. Math. Phys. Kl. Saechs. Akad. Wiss. 32, 507 (1912).

Abh. Math. Phys. Kl. Saechs. Akad. Wiss. (1)

O. Wiener, Abh. Math. Phys. Kl. Saechs. Akad. Wiss. 32, 507 (1912).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. G. Granqvist, Å. Andersson, O. Hunderi, Appl. Phys. Lett. 35, 268 (1979).
[CrossRef]

J. Appl. Phys. (1)

J. Blain, C. LeBel, R. G. Saint-Jacques, F. Rheault, J. Appl. Phys. 58, 490 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Nakamura, M. Saito, L. F. Huang, M. Miyagi, K. Wada, Jpn. J. Appl. Phys. 31, 3589 (1992).
[CrossRef]

Thin Solid Films (3)

A. Scherer, O. T. Inal, Thin Solid Films 101, 311 (1983).
[CrossRef]

R. D. Patel, M. G. Takwale, V. K. Nagar, V. G. Bhide, Thin Solid Films 115, 169 (1984).
[CrossRef]

T. Pavlovic, A. Ignatiev, Thin Solid Films 138, 97 (1986).
[CrossRef]

Trans. Inst. Electr. Inform. Commun. Eng. E (1)

T. Seki, M. Saito, M. Miyagi, Trans. Inst. Electr. Inform. Commun. Eng. E 74, 3861 (1991).

Other (2)

K. Takano, M. Saito, M. Miyagi, “Cube polarizers by the use of metal particles in anodic alumina films,” Appl. Opt. (to be published).

M. Saito, S. Nakamura, M. Miyagi, “Light scattering by liquid crystals in columnar micropores,” J. Appl. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Configuration for measuring the transmittance of an anodic alumina film. The pores of the alumina film are filled with an optical liquid.

Fig. 2
Fig. 2

Transmission spectra of anodic alumina films that were anodized in a phosphoric acid solution for an incident angle θ of (a) 0 deg or (b) 60 deg. The film thickness is 40 μm, and the solid and dashed curves correspond to p and s polarizations, respectively. The numbers beside the curves indicate the refractive index of the liquid (air) contained in the pores.

Fig. 3
Fig. 3

Dependence of the transmittance on the refractive index n2 of a guest material (an optical liquid). Measurements were achieved for normal incidence at wavelengths of 0.6, 0.8, and 1.0 μm.

Fig. 4
Fig. 4

Fabrication method of a channel waveguide. Waveguides of various shapes can be formed by a change in the slit pattern of a metal mask.

Fig. 5
Fig. 5

Optical attenuation of channel waveguides made of alumina and HV2 with the pores in the cladding region filled with (a) air or (b) the MO1 resin. The alumina film was anodized in a oxalic acid solution. The film thickness is 40 μm, and the waveguide width is ~100 μm. The circles and triangles correspond to 0.85-and 1.30-μm wavelengths, respectively; the open and filled marks correspond to polarizations vertical (V) and horizontal (H) to the pores (Fig. 4), respectively. The solid lines were drawn by the method of least-squares fitting.

Fig. 6
Fig. 6

Light transmitted through the Y branch: white light was launched from one end of the waveguide, and transmitted light was observed at the other end. l denotes the length of the waveguide. The output end was cut down successively from l = 11 mm to l = 5 mm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n V = n 1 - f n 1 ( n 1 2 - n 2 2 ) / ( n 1 2 + n 2 2 )
n H = n 1 - f ( n 1 2 - n 2 2 ) / ( 2 n 1 )

Metrics