Abstract

The effect of third-order dispersion on soliton-effect pulse compression is investigated. We show that third-order dispersion causes severe degradation in dispersion-shifted fibers in the compression of high-order soliton pulses. As much as an 80% reduction is found in the optimum compression ratio of 15th-order solitons of 1-ps width. We also show that fiber loss cannot be neglected in soliton-effect compression schemes, which gives rise to an initial pulse-width dependence in the compression ratio and to the existence of an optimum initial width.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  2. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Y. C. Lee, Opt. Lett. 12, 628 (1987).
    [CrossRef] [PubMed]
  3. G. P. Agrawal, M. J. Potasek, Phys. Rev. A 3, 1765 (1986).
    [CrossRef]
  4. W. Hodel, H. P. Weber, Opt. Lett. 12, 924 (1987).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Opt. Lett. 15, 224 (1990).
    [CrossRef] [PubMed]
  6. K. C. Chan, H. F. Liu, Opt. Lett. 18, 1150 (1993).
    [CrossRef] [PubMed]
  7. N. N. Akhmediev, N. V. Mitzkevich, IEEE J. Quantum Electron. 27, 849 (1991).
    [CrossRef]
  8. L. G. Cohen, W. L. Mammel, S. J. Jang, Electron. Lett. 18, 1023 (1982).
    [CrossRef]

1993 (1)

1991 (1)

N. N. Akhmediev, N. V. Mitzkevich, IEEE J. Quantum Electron. 27, 849 (1991).
[CrossRef]

1990 (1)

1987 (2)

1986 (1)

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 3, 1765 (1986).
[CrossRef]

1983 (1)

1982 (1)

L. G. Cohen, W. L. Mammel, S. J. Jang, Electron. Lett. 18, 1023 (1982).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Opt. Lett. 15, 224 (1990).
[CrossRef] [PubMed]

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 3, 1765 (1986).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev, N. V. Mitzkevich, IEEE J. Quantum Electron. 27, 849 (1991).
[CrossRef]

Chan, K. C.

Chen, H. H.

Cohen, L. G.

L. G. Cohen, W. L. Mammel, S. J. Jang, Electron. Lett. 18, 1023 (1982).
[CrossRef]

Gordon, J. P.

Hodel, W.

Jang, S. J.

L. G. Cohen, W. L. Mammel, S. J. Jang, Electron. Lett. 18, 1023 (1982).
[CrossRef]

Lee, Y. C.

Liu, H. F.

Mammel, W. L.

L. G. Cohen, W. L. Mammel, S. J. Jang, Electron. Lett. 18, 1023 (1982).
[CrossRef]

Menyuk, C. R.

Mitzkevich, N. V.

N. N. Akhmediev, N. V. Mitzkevich, IEEE J. Quantum Electron. 27, 849 (1991).
[CrossRef]

Mollenauer, L. F.

Potasek, M. J.

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 3, 1765 (1986).
[CrossRef]

Stolen, R. H.

Tomlinson, W. J.

Wai, P. K. A.

Weber, H. P.

Electron. Lett. (1)

L. G. Cohen, W. L. Mammel, S. J. Jang, Electron. Lett. 18, 1023 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. N. Akhmediev, N. V. Mitzkevich, IEEE J. Quantum Electron. 27, 849 (1991).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. A (1)

G. P. Agrawal, M. J. Potasek, Phys. Rev. A 3, 1765 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optimum compression ratio as a function of soliton order for the ideal soliton-effect pulse compression [curve (a)], the case with only SRS [curve (b)], the case with only β3 [curve (c)], and the case with both β3 and SRS [curve (d)]. The parameters used are α = 0.2 dB/km, β2 = 1 ps2/km, γ = 2 W−1 km−1, TR = 5 fs, and β3 = 0.1 ps3/km.

Fig. 2
Fig. 2

Shape of the compressed N = 15 soliton at the point of optimum compression for the case of soliton-effect compression degraded by (a) only SRS and (b) only β3. The parameters used here are the same as in Fig. 1.

Fig. 3
Fig. 3

Optimum compression ratio as a function of initial pulse width for solitons of order N = 2, 3, 4, 5, 10. The parameters used here are the same as in Fig. 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z = i γ ( | A | 2 A T R A | A | 2 T ) i 2 β 2 2 A T 2 + 1 6 β 3 3 A T 3 α 2 A ,
A ( 0 , T ) = P 0 sech ( T T 0 ) ,

Metrics