Abstract

Binary phase plates are often suggested as a means for improving the far-field brightness of beams coming from antiphased laser arrays or waveguide lasers operating in higher-order modes. Somewhat surprisingly, however, binary phase plates actually cannot improve at all the second-moment-based beam quality factor M2 as usually defined for such beams. Even from a power-in-the-bucket viewpoint, their usefulness is debatable.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Thomas, J. R. Leger, G. J. Swanson, M. Holz, in Conference Digest, 1990 LEOS Summer Topical Meeting on New Semiconductor Laser Devices and Applications (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1990), pp. 27–28.
    [CrossRef]
  2. D. E. Novoseller, D. Botez, IEEE J. Quantum Electron. 25, 1179 (1989).
    [CrossRef]
  3. K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
    [CrossRef]
  4. J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
    [CrossRef] [PubMed]
  5. S. Thaniyavarn, W. Dougherty, Electron. Lett. 23, 5 (1987).
    [CrossRef]
  6. L. Marshall, Laser Focus 4(4), 26 (1971).
  7. M. W. Sasnett, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), pp. 132–142.
  8. A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).
  9. M. W. Sasnett, T. F. Johnston, Proc. Soc. Photo-Opt. Instrum. Eng. 1414, 21 (1991).
  10. H. Weber, Opt. Quantum Electron. 24, S861 (1992).
    [CrossRef]
  11. R. Martfnez-Herrero, P. M. Mejfas, G. Piquero, Opt. Lett. 17, 1650 (1992).
    [CrossRef]

1992

H. Weber, Opt. Quantum Electron. 24, S861 (1992).
[CrossRef]

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

R. Martfnez-Herrero, P. M. Mejfas, G. Piquero, Opt. Lett. 17, 1650 (1992).
[CrossRef]

1991

M. W. Sasnett, T. F. Johnston, Proc. Soc. Photo-Opt. Instrum. Eng. 1414, 21 (1991).

1990

A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).

1989

D. E. Novoseller, D. Botez, IEEE J. Quantum Electron. 25, 1179 (1989).
[CrossRef]

1987

1971

L. Marshall, Laser Focus 4(4), 26 (1971).

Abramski, K. M.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Baker, H. J.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Botez, D.

D. E. Novoseller, D. Botez, IEEE J. Quantum Electron. 25, 1179 (1989).
[CrossRef]

Colley, A. D.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Dougherty, W.

S. Thaniyavarn, W. Dougherty, Electron. Lett. 23, 5 (1987).
[CrossRef]

Hall, D. R.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Holz, M.

J. Thomas, J. R. Leger, G. J. Swanson, M. Holz, in Conference Digest, 1990 LEOS Summer Topical Meeting on New Semiconductor Laser Devices and Applications (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1990), pp. 27–28.
[CrossRef]

Johnston, T. F.

M. W. Sasnett, T. F. Johnston, Proc. Soc. Photo-Opt. Instrum. Eng. 1414, 21 (1991).

Leger, J. R.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
[CrossRef] [PubMed]

J. Thomas, J. R. Leger, G. J. Swanson, M. Holz, in Conference Digest, 1990 LEOS Summer Topical Meeting on New Semiconductor Laser Devices and Applications (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1990), pp. 27–28.
[CrossRef]

Marshall, L.

L. Marshall, Laser Focus 4(4), 26 (1971).

Martfnez-Herrero, R.

Mejfas, P. M.

Novoseller, D. E.

D. E. Novoseller, D. Botez, IEEE J. Quantum Electron. 25, 1179 (1989).
[CrossRef]

Piquero, G.

Sasnett, M. W.

M. W. Sasnett, T. F. Johnston, Proc. Soc. Photo-Opt. Instrum. Eng. 1414, 21 (1991).

M. W. Sasnett, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), pp. 132–142.

Siegman, A. E.

A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).

Swanson, G. J.

J. R. Leger, G. J. Swanson, W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
[CrossRef] [PubMed]

J. Thomas, J. R. Leger, G. J. Swanson, M. Holz, in Conference Digest, 1990 LEOS Summer Topical Meeting on New Semiconductor Laser Devices and Applications (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1990), pp. 27–28.
[CrossRef]

Thaniyavarn, S.

S. Thaniyavarn, W. Dougherty, Electron. Lett. 23, 5 (1987).
[CrossRef]

Thomas, J.

J. Thomas, J. R. Leger, G. J. Swanson, M. Holz, in Conference Digest, 1990 LEOS Summer Topical Meeting on New Semiconductor Laser Devices and Applications (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1990), pp. 27–28.
[CrossRef]

Veldkamp, W. B.

Weber, H.

H. Weber, Opt. Quantum Electron. 24, S861 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Electron. Lett.

S. Thaniyavarn, W. Dougherty, Electron. Lett. 23, 5 (1987).
[CrossRef]

IEEE J. Quantum Electron.

D. E. Novoseller, D. Botez, IEEE J. Quantum Electron. 25, 1179 (1989).
[CrossRef]

Laser Focus

L. Marshall, Laser Focus 4(4), 26 (1971).

Opt. Lett.

Opt. Quantum Electron.

H. Weber, Opt. Quantum Electron. 24, S861 (1992).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

A. E. Siegman, Proc. Soc. Photo-Opt. Instrum. Eng. 1224, 2 (1990).

M. W. Sasnett, T. F. Johnston, Proc. Soc. Photo-Opt. Instrum. Eng. 1414, 21 (1991).

Other

J. Thomas, J. R. Leger, G. J. Swanson, M. Holz, in Conference Digest, 1990 LEOS Summer Topical Meeting on New Semiconductor Laser Devices and Applications (IEEE Lasers and Electro-Optics Society, Piscataway, N.J., 1990), pp. 27–28.
[CrossRef]

M. W. Sasnett, in The Physics and Technology of Laser Resonators, D. R. Hall, P. E. Jackson, eds. (Hilger, New York, 1989), pp. 132–142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Near-field E-field profiles, near-field intensity profiles, and associated far-field intensity profiles for an asymmetric waveguide or diode-array mode with four alternating half-cycles (left-hand column) and for the same mode with the alternating half-cycles brought into phase by using a binary phase plate (right-hand column). The markers on the far-field profiles are at 1 and 1.5 standard deviations from the centerline.

Fig. 2
Fig. 2

Expanded views of the far-field intensity profiles for the symmetric and asymmetric beams from Fig. 1. The markers in this case are at 1 and 2 standard deviations from the centerline.

Fig. 3
Fig. 3

Integrated power versus far-field aperture half-width (or far-field angular half-width) for the two beam profiles shown in Figs. 1 and 2, in addition to similar curves for a uniformly illuminated slit and a single sinusoidal half-cycle near-field pattern. The aperture half-width is measured in units of the standard deviations for the symmetric or antisymmetric m = 4 profiles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ 0 x 2 = x 2 ¯ = x 2 E ˜ ( x ) 2 d x
σ s 2 s 2 ¯ s 2 P ˜ ( s ) 2 d s
σ s 2 = ( 1 2 π ) | d E ˜ ( x ) d x | 2 d x .

Metrics