Abstract

Pulse generation in a two-photon laser is investigated theoretically. A simple model including dispersion, linear absorption, and two-photon saturable gain yields stable mode-locked pulses with a sech2 intensity profile. Unlike as with self-phase-modulation methods, the pulse width is independent of the nonlinear parameters.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Gauthier, Q. Wu, S. E. Morin, T. W. Mossberg, Phys. Rev. Lett. 68, 464 (1992).
    [CrossRef] [PubMed]
  2. H. P. Yuen, Appl. Phys. Lett. 26, 505 (1975).
    [CrossRef]
  3. L. M. Narducci, W. W. Eidson, P. Furcinitti, D. C. Eteson, Phys. Rev. A 16, 1665 (1977).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics, Quantum Electronics—Principles and Applications (Academic, San Diego, Calif., 1989), p. 43.
  5. J. Zakrzewski, M. Lewenstein, Phys. Rev. A 45, 2057 (1992).
    [CrossRef] [PubMed]
  6. C. Paré, L. Gagnon, P. Bélanger, Opt. Commun. 74, 228 (1989).
    [CrossRef]
  7. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 205.
  8. C. N. Ironside, IEEE J. Quantum Electron. 28, 842 (1992).
    [CrossRef]
  9. O. Madelung, ed., Semiconductors: Group IV Elements and III-V Compounds, Data in Science and Technology (Springer-Verlag, Berlin, 1991).
  10. C. C. Yang, A. Villeneuve, G. I. Stegeman, J. S. Aitchison, Opt. Lett. 17, 170 (1992).

1992 (4)

D. J. Gauthier, Q. Wu, S. E. Morin, T. W. Mossberg, Phys. Rev. Lett. 68, 464 (1992).
[CrossRef] [PubMed]

J. Zakrzewski, M. Lewenstein, Phys. Rev. A 45, 2057 (1992).
[CrossRef] [PubMed]

C. N. Ironside, IEEE J. Quantum Electron. 28, 842 (1992).
[CrossRef]

C. C. Yang, A. Villeneuve, G. I. Stegeman, J. S. Aitchison, Opt. Lett. 17, 170 (1992).

1989 (1)

C. Paré, L. Gagnon, P. Bélanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

1977 (1)

L. M. Narducci, W. W. Eidson, P. Furcinitti, D. C. Eteson, Phys. Rev. A 16, 1665 (1977).
[CrossRef]

1975 (1)

H. P. Yuen, Appl. Phys. Lett. 26, 505 (1975).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, Quantum Electronics—Principles and Applications (Academic, San Diego, Calif., 1989), p. 43.

Aitchison, J. S.

C. C. Yang, A. Villeneuve, G. I. Stegeman, J. S. Aitchison, Opt. Lett. 17, 170 (1992).

Bélanger, P.

C. Paré, L. Gagnon, P. Bélanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

Eidson, W. W.

L. M. Narducci, W. W. Eidson, P. Furcinitti, D. C. Eteson, Phys. Rev. A 16, 1665 (1977).
[CrossRef]

Eteson, D. C.

L. M. Narducci, W. W. Eidson, P. Furcinitti, D. C. Eteson, Phys. Rev. A 16, 1665 (1977).
[CrossRef]

Furcinitti, P.

L. M. Narducci, W. W. Eidson, P. Furcinitti, D. C. Eteson, Phys. Rev. A 16, 1665 (1977).
[CrossRef]

Gagnon, L.

C. Paré, L. Gagnon, P. Bélanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

Gauthier, D. J.

D. J. Gauthier, Q. Wu, S. E. Morin, T. W. Mossberg, Phys. Rev. Lett. 68, 464 (1992).
[CrossRef] [PubMed]

Ironside, C. N.

C. N. Ironside, IEEE J. Quantum Electron. 28, 842 (1992).
[CrossRef]

Lewenstein, M.

J. Zakrzewski, M. Lewenstein, Phys. Rev. A 45, 2057 (1992).
[CrossRef] [PubMed]

Morin, S. E.

D. J. Gauthier, Q. Wu, S. E. Morin, T. W. Mossberg, Phys. Rev. Lett. 68, 464 (1992).
[CrossRef] [PubMed]

Mossberg, T. W.

D. J. Gauthier, Q. Wu, S. E. Morin, T. W. Mossberg, Phys. Rev. Lett. 68, 464 (1992).
[CrossRef] [PubMed]

Narducci, L. M.

L. M. Narducci, W. W. Eidson, P. Furcinitti, D. C. Eteson, Phys. Rev. A 16, 1665 (1977).
[CrossRef]

Paré, C.

C. Paré, L. Gagnon, P. Bélanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 205.

Stegeman, G. I.

C. C. Yang, A. Villeneuve, G. I. Stegeman, J. S. Aitchison, Opt. Lett. 17, 170 (1992).

Villeneuve, A.

C. C. Yang, A. Villeneuve, G. I. Stegeman, J. S. Aitchison, Opt. Lett. 17, 170 (1992).

Wu, Q.

D. J. Gauthier, Q. Wu, S. E. Morin, T. W. Mossberg, Phys. Rev. Lett. 68, 464 (1992).
[CrossRef] [PubMed]

Yang, C. C.

C. C. Yang, A. Villeneuve, G. I. Stegeman, J. S. Aitchison, Opt. Lett. 17, 170 (1992).

Yuen, H. P.

H. P. Yuen, Appl. Phys. Lett. 26, 505 (1975).
[CrossRef]

Zakrzewski, J.

J. Zakrzewski, M. Lewenstein, Phys. Rev. A 45, 2057 (1992).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. P. Yuen, Appl. Phys. Lett. 26, 505 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. N. Ironside, IEEE J. Quantum Electron. 28, 842 (1992).
[CrossRef]

Opt. Commun. (1)

C. Paré, L. Gagnon, P. Bélanger, Opt. Commun. 74, 228 (1989).
[CrossRef]

Opt. Lett. (1)

C. C. Yang, A. Villeneuve, G. I. Stegeman, J. S. Aitchison, Opt. Lett. 17, 170 (1992).

Phys. Rev. A (2)

L. M. Narducci, W. W. Eidson, P. Furcinitti, D. C. Eteson, Phys. Rev. A 16, 1665 (1977).
[CrossRef]

J. Zakrzewski, M. Lewenstein, Phys. Rev. A 45, 2057 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. J. Gauthier, Q. Wu, S. E. Morin, T. W. Mossberg, Phys. Rev. Lett. 68, 464 (1992).
[CrossRef] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, Quantum Electronics—Principles and Applications (Academic, San Diego, Calif., 1989), p. 43.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 205.

O. Madelung, ed., Semiconductors: Group IV Elements and III-V Compounds, Data in Science and Technology (Springer-Verlag, Berlin, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Intensity and chirp of the solution given in Eq. (2). The horizontal axis is in units of α / D t. The vertical axis is in units of α/β for the intensity and in units of α / D for the chirp. The sign of the chirp depends on the sign of the GVD.

Fig. 2
Fig. 2

Spectrum of the TPG pulse solution. The solid curve is a plot of Eq. (4), which is the Fourier transform of the pulse of Eq. (2). For comparison, the dashed curve is the spectrum of the same pulse but with ϕ(t) = 0.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i E z = ± D 2 2 E t 2 - i α E + i β E 2 E ,
E ( t ) = 3 α 2 β sech ( α D t ) exp [ ± i ϕ ( t ) ] exp ( ± i α z 2 2 ) ,
ϕ ( t ) = 2 ln [ sech ( α D t ) ] ,
E ˜ ( Ω ) 2 = 3 π D 2 β 2 sech ( Ω + π 2 ) sech ( Ω - π 2 ) × sinh ( π / 2 ) , Ω π 2 D 4 α ω ,
d N d t = - 2 W N + N 0 - N τ ,
d β d t = - β I 2 avg + β 0 - β τ ,

Metrics