Abstract

A perturbative and numerical analysis reveals the conditions for suppressing the interaction between adjacent phase-locked solitons in a soliton optical memory. This may permit the permanent storage of a soliton bit pattern in a diffractive or dispersive ring cavity.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. McDonald, W. J. Firth, J. Opt. Soc. Am. B 7, 1238 (1990); J. Mod. Opt. 37, 613 (1990).
    [CrossRef]
  2. L. A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
    [CrossRef] [PubMed]
  3. M. Haelterman, S. Trillo, S. Wabnitz, Opt. Lett. 17, 745 (1992); Opt. Commun. 91, 401 (1992).
    [CrossRef] [PubMed]
  4. S. M. J. Kelly, K. Smith, K. J. Blow, N. J. Doran, Opt. Lett. 16, 1337 (1991).
    [CrossRef] [PubMed]
  5. K. Nozaki, N. Bekki, J. Phys. Soc. Jpn. 54, 2363 (1985); Physica D 21, 381 (1986).
    [CrossRef]
  6. J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
    [CrossRef]
  7. Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991).
    [CrossRef]

1992 (1)

1991 (2)

1990 (1)

G. S. McDonald, W. J. Firth, J. Opt. Soc. Am. B 7, 1238 (1990); J. Mod. Opt. 37, 613 (1990).
[CrossRef]

1987 (1)

L. A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
[CrossRef] [PubMed]

1985 (1)

K. Nozaki, N. Bekki, J. Phys. Soc. Jpn. 54, 2363 (1985); Physica D 21, 381 (1986).
[CrossRef]

1974 (1)

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Bekki, N.

K. Nozaki, N. Bekki, J. Phys. Soc. Jpn. 54, 2363 (1985); Physica D 21, 381 (1986).
[CrossRef]

Blow, K. J.

Doran, N. J.

Firth, W. J.

G. S. McDonald, W. J. Firth, J. Opt. Soc. Am. B 7, 1238 (1990); J. Mod. Opt. 37, 613 (1990).
[CrossRef]

Haelterman, M.

Kelly, S. M. J.

Kodama, Y.

Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

Lefever, R.

L. A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
[CrossRef] [PubMed]

Lugiato, L. A.

L. A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
[CrossRef] [PubMed]

McDonald, G. S.

G. S. McDonald, W. J. Firth, J. Opt. Soc. Am. B 7, 1238 (1990); J. Mod. Opt. 37, 613 (1990).
[CrossRef]

Nozaki, K.

K. Nozaki, N. Bekki, J. Phys. Soc. Jpn. 54, 2363 (1985); Physica D 21, 381 (1986).
[CrossRef]

Satsuma, J.

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Smith, K.

Trillo, S.

Wabnitz, S.

Yajima, N.

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Electron. Lett. (1)

Y. Kodama, S. Wabnitz, Electron. Lett. 27, 1931 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

G. S. McDonald, W. J. Firth, J. Opt. Soc. Am. B 7, 1238 (1990); J. Mod. Opt. 37, 613 (1990).
[CrossRef]

J. Phys. Soc. Jpn. (1)

K. Nozaki, N. Bekki, J. Phys. Soc. Jpn. 54, 2363 (1985); Physica D 21, 381 (1986).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

L. A. Lugiato, R. Lefever, Phys. Rev. Lett. 58, 2209 (1987).
[CrossRef] [PubMed]

Prog. Theor. Phys. Suppl. (1)

J. Satsuma, N. Yajima, Prog. Theor. Phys. Suppl. 55, 284 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evolution of two-soliton eigenvalues from perturbation theory with α = 0.05, S = 0.0335, and σ = 8.

Fig. 2
Fig. 2

Suppression of soliton collision from the numerical solution of Eqs. (1) and (7): (a) without driving and damping (α = S = 0); (b) α = 0.1, S = 0.065; (c) α = 0.18, S = 0.117.

Fig. 3
Fig. 3

Dependence of the collision distance Zc on the cw forcing amplitude S for pulse separations σ = 6, 8.

Fig. 4
Fig. 4

Addressing and erasure of an eight-bit pattern of independent solitons.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

i u z + 1 2 u T T + u 2 u = ( - i α + Δ ) u + i S ,
( C 2 - Δ ) C = - i α C + i S .
v ( Z , T ) = η sech ( η T ) exp ( - i σ - i π / 2 ) ,
η Z = - 2 α η - π 2 C η 2 cos χ , χ Z = Δ - η 2 2 + π C η sin χ ,
η 2 Δ ,
cos χ = - 4 α π C η - 2 α 2 Δ π S .
U ( Z , T ) = exp ( - i ϕ 0 ) sech T + C 1 sech T - 2 i S ,
u ( T , Z = 0 ) = exp ( - i ϕ 0 ) [ sech ( T - σ / 2 ) + sech ( T + σ / 2 ) ] + C 1 .
Z c = 2 π η 1 2 - η 2 2 .
d σ 12 d Z 1 2 [ η 1 2 ( Z ) - η 2 2 ( Z ) ] .

Metrics