Abstract

We report what is to our knowledge the first observation and characterization of the photorefractive effect in ion-implanted KNbO3 waveguides. The implantation was performed with 2.6-MeV He ions at a dose of 7.5 × 1014 cm−2. We measured two-wave-mixing gains of ~8 and ~2 cm−1 at wavelengths of 514.5 and 810 nm, respectively, and grating buildup times in the visible and the near infrared of typically 40 μs at a power level of 10 mW. Electrons are found to be the dominant charge carriers, implying that the gain direction is reversed in the waveguide as compared with that of the bulk crystal.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter, Phys. Rep. 93, 199 (1982).
    [Crossref]
  2. P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988); Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).
    [Crossref]
  3. P. Günter, Opt. Commun. 11, 285 (1974).
    [Crossref]
  4. I. Biaggio, P. Kerkoc, L.-S. Wu, B. Zysset, P. Günter, J. Opt. Soc. Am. B 9, 507 (1992).
    [Crossref]
  5. E. Voit, M. Zha, P. Amrhein, P. Günter, Appl. Phys. Lett. 51, 2079 (1987).
    [Crossref]
  6. F. P. Strohkendl, R. Irmscher, Ch. Buchal, P. Günter, J. Appl. Phys. 69, 84 (1991).
    [Crossref]
  7. D. Fluck, M. Fleuster, Ch. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
    [Crossref]
  8. K. E. Youden, S. W. James, R. W. Eason, P. J. Chandler, L. Zhang, P. D. Townsend, Opt. Lett. 17, 1509 (1992).
    [Crossref] [PubMed]
  9. D. Kip, E. Krätzig, Opt. Lett. 17, 1563 (1992).
    [Crossref] [PubMed]
  10. F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
    [Crossref]
  11. R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
    [Crossref]
  12. D. Fluck, R. Irmscher, Ch. Buchal, P. Günter, Ferroelectrics 128, 79 (1992).
    [Crossref]
  13. P. D. Townsend, Rep. Prog. Phys. 50, 501 (1987).
    [Crossref]
  14. D. Fluck, P. Amrhein, P. Günter, J. Opt. Soc. Am. B 8, 2196 (1991).
    [Crossref]
  15. M. Zgonik, R. Schlesser, I. Biaggio, P. Günter, “Materials constants of KNbO3 relevant for electro- and acousto-optics,” submitted to J. Appl. Phys.

1992 (5)

1991 (4)

F. P. Strohkendl, R. Irmscher, Ch. Buchal, P. Günter, J. Appl. Phys. 69, 84 (1991).
[Crossref]

D. Fluck, P. Amrhein, P. Günter, J. Opt. Soc. Am. B 8, 2196 (1991).
[Crossref]

F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
[Crossref]

R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
[Crossref]

1987 (2)

E. Voit, M. Zha, P. Amrhein, P. Günter, Appl. Phys. Lett. 51, 2079 (1987).
[Crossref]

P. D. Townsend, Rep. Prog. Phys. 50, 501 (1987).
[Crossref]

1982 (1)

P. Günter, Phys. Rep. 93, 199 (1982).
[Crossref]

1974 (1)

P. Günter, Opt. Commun. 11, 285 (1974).
[Crossref]

Amrhein, P.

D. Fluck, P. Amrhein, P. Günter, J. Opt. Soc. Am. B 8, 2196 (1991).
[Crossref]

E. Voit, M. Zha, P. Amrhein, P. Günter, Appl. Phys. Lett. 51, 2079 (1987).
[Crossref]

Biaggio, I.

I. Biaggio, P. Kerkoc, L.-S. Wu, B. Zysset, P. Günter, J. Opt. Soc. Am. B 9, 507 (1992).
[Crossref]

M. Zgonik, R. Schlesser, I. Biaggio, P. Günter, “Materials constants of KNbO3 relevant for electro- and acousto-optics,” submitted to J. Appl. Phys.

Buchal, Ch.

D. Fluck, R. Irmscher, Ch. Buchal, P. Günter, Ferroelectrics 128, 79 (1992).
[Crossref]

D. Fluck, M. Fleuster, Ch. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[Crossref]

F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
[Crossref]

F. P. Strohkendl, R. Irmscher, Ch. Buchal, P. Günter, J. Appl. Phys. 69, 84 (1991).
[Crossref]

R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
[Crossref]

Chandler, P. J.

Eason, R. W.

Fleuster, M.

D. Fluck, M. Fleuster, Ch. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[Crossref]

Fluck, D.

D. Fluck, M. Fleuster, Ch. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[Crossref]

D. Fluck, R. Irmscher, Ch. Buchal, P. Günter, Ferroelectrics 128, 79 (1992).
[Crossref]

R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
[Crossref]

F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
[Crossref]

D. Fluck, P. Amrhein, P. Günter, J. Opt. Soc. Am. B 8, 2196 (1991).
[Crossref]

Günter, P.

I. Biaggio, P. Kerkoc, L.-S. Wu, B. Zysset, P. Günter, J. Opt. Soc. Am. B 9, 507 (1992).
[Crossref]

D. Fluck, M. Fleuster, Ch. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[Crossref]

D. Fluck, R. Irmscher, Ch. Buchal, P. Günter, Ferroelectrics 128, 79 (1992).
[Crossref]

R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
[Crossref]

F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
[Crossref]

F. P. Strohkendl, R. Irmscher, Ch. Buchal, P. Günter, J. Appl. Phys. 69, 84 (1991).
[Crossref]

D. Fluck, P. Amrhein, P. Günter, J. Opt. Soc. Am. B 8, 2196 (1991).
[Crossref]

E. Voit, M. Zha, P. Amrhein, P. Günter, Appl. Phys. Lett. 51, 2079 (1987).
[Crossref]

P. Günter, Phys. Rep. 93, 199 (1982).
[Crossref]

P. Günter, Opt. Commun. 11, 285 (1974).
[Crossref]

M. Zgonik, R. Schlesser, I. Biaggio, P. Günter, “Materials constants of KNbO3 relevant for electro- and acousto-optics,” submitted to J. Appl. Phys.

Irmscher, R.

D. Fluck, R. Irmscher, Ch. Buchal, P. Günter, Ferroelectrics 128, 79 (1992).
[Crossref]

F. P. Strohkendl, R. Irmscher, Ch. Buchal, P. Günter, J. Appl. Phys. 69, 84 (1991).
[Crossref]

R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
[Crossref]

F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
[Crossref]

James, S. W.

Kerkoc, P.

Kip, D.

Krätzig, E.

Schlesser, R.

M. Zgonik, R. Schlesser, I. Biaggio, P. Günter, “Materials constants of KNbO3 relevant for electro- and acousto-optics,” submitted to J. Appl. Phys.

Stritzker, B.

R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
[Crossref]

Strohkendl, F. P.

F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
[Crossref]

F. P. Strohkendl, R. Irmscher, Ch. Buchal, P. Günter, J. Appl. Phys. 69, 84 (1991).
[Crossref]

Townsend, P. D.

Voit, E.

E. Voit, M. Zha, P. Amrhein, P. Günter, Appl. Phys. Lett. 51, 2079 (1987).
[Crossref]

Wu, L.-S.

Youden, K. E.

Zgonik, M.

M. Zgonik, R. Schlesser, I. Biaggio, P. Günter, “Materials constants of KNbO3 relevant for electro- and acousto-optics,” submitted to J. Appl. Phys.

Zha, M.

E. Voit, M. Zha, P. Amrhein, P. Günter, Appl. Phys. Lett. 51, 2079 (1987).
[Crossref]

Zhang, L.

Zysset, B.

Appl. Phys. Lett. (2)

E. Voit, M. Zha, P. Amrhein, P. Günter, Appl. Phys. Lett. 51, 2079 (1987).
[Crossref]

F. P. Strohkendl, D. Fluck, Ch. Buchal, R. Irmscher, P. Günter, Appl. Phys. Lett. 59, 3354 (1991).
[Crossref]

Ferroelectrics (1)

D. Fluck, R. Irmscher, Ch. Buchal, P. Günter, Ferroelectrics 128, 79 (1992).
[Crossref]

J. Appl. Phys. (2)

F. P. Strohkendl, R. Irmscher, Ch. Buchal, P. Günter, J. Appl. Phys. 69, 84 (1991).
[Crossref]

D. Fluck, M. Fleuster, Ch. Buchal, P. Günter, J. Appl. Phys. 72, 1671 (1992).
[Crossref]

J. Opt. Soc. Am. B (2)

Mater. Res. Soc. Symp. Proc. (1)

R. Irmscher, D. Fluck, Ch. Buchal, B. Stritzker, P. Günter, Mater. Res. Soc. Symp. Proc. 201, 399 (1991).
[Crossref]

Opt. Commun. (1)

P. Günter, Opt. Commun. 11, 285 (1974).
[Crossref]

Opt. Lett. (2)

Phys. Rep. (1)

P. Günter, Phys. Rep. 93, 199 (1982).
[Crossref]

Rep. Prog. Phys. (1)

P. D. Townsend, Rep. Prog. Phys. 50, 501 (1987).
[Crossref]

Other (2)

M. Zgonik, R. Schlesser, I. Biaggio, P. Günter, “Materials constants of KNbO3 relevant for electro- and acousto-optics,” submitted to J. Appl. Phys.

P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988); Photorefractive Materials and Their Applications II, Vol. 62 of Topics in Applied Physics (Springer-Verlag, Berlin, 1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement and crystal configuration for two-beam coupling measurements in planar waveguides. BS, beam splitter; M1, M2, mirrors; S and P, signal and pump beams, respectively.

Fig. 2
Fig. 2

Two-beam coupling gain γ0 as a function of the beam power ratio β0 measured at λ = 514.5 nm for a grating spacing Λg = 1.2 μm and an interaction length of 1.1 mm in the waveguide. The best-fitting theoretical curve determines an exponential gain Γ = 7.8 cm−1.

Fig. 3
Fig. 3

Exponential two-beam coupling gain Γ as a function of the wavelength measured in the ion-implanted KNbO3 waveguide for a fixed intersection angle 2Θ = 11.2°. The dashed curve represents the calculated dispersion for an effective trap density N* = 3 × 1016 cm−3 and a scaling factor R = 0.7.

Fig. 4
Fig. 4

Buildup of the photorefractive grating with Λg = 2 μm at a wavelength of 810 nm and a pump beam power of 10 mW in the waveguide. The dashed curve corresponds to an exponential time constant of 40 μs.

Fig. 5
Fig. 5

Two-beam coupling response time versus power of the pump beam in the waveguide for a wavelength of 810 nm and a grating spacing Λg = 2 μm. The solid curve is calculated with τ0 = 120 μs and P0 = 1 mW.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ 0 = ( 1 + β 0 ) exp ( Γ L ) 1 + β 0 exp ( Γ L )
Γ = 2 π λ 0 r eff n c 3 cos ( 2 Θ ) R E d E q * E d + E q * ,
E q * = e 0 eff N * Λ g 2 π ,             E d = k B T e 2 π Λ g , Λ g = λ 0 2 n c sin Θ ,
τ = τ 0 P 0 P ,

Metrics