Abstract

We report the initial investigation of the electrodynamics of visible-light interaction with the outer segment of the vertebrate retinal rod based on detailed, first-principles computational electromagnetics modeling. The computational method employs a direct time integration of Maxwell’s equations in a two-dimensional space grid for both transverse-magnetic and transverse-electric vector-field modes. Detailed maps of the optical standing wave within the retinal rod are given for three illumination wavelengths: 714, 505, and 475 nm. The standing-wave data are Fourier analyzed to obtain spatial frequency spectra. Except for isolated peaks, the spatial frequency spectra are essentially independent of the illumination wavelength.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. O’Brien, J. Opt. Soc. Am. 41, 882 (1951).
    [Crossref]
  2. J. Enoch, J. Opt. Soc. Am. 53, 71 (1963).
    [Crossref]
  3. M. L. Calvo, Bio. Cybernet. 54, 201 (1986).
    [Crossref]
  4. W. Wijngaard, J. Opt. Soc. Am. 61, 1187 (1971).
    [Crossref] [PubMed]
  5. A. W. Snyder, C. Pask, Vision Res. 13, 1115 (1973).
    [Crossref] [PubMed]
  6. P. M. Tannenbaum, Vision Res. 15, 591 (1975).
    [Crossref] [PubMed]
  7. K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).
  8. A. Taflove, M. E. Brodwin, IEEE Trans. Microwave Theory Tech. MTT-23, 623 (1975).
    [Crossref]
  9. G. Mur, IEEE Trans. Electromagn. Compat. EC-23, 377 (1981).
    [Crossref]
  10. A. Taflove, Wave Motion 10, 547 (1988).
    [Crossref]
  11. S. T. Chu, S. K. Chaudhuri, IEEE J. Lightwave Technol. 7, 2033 (1989).
    [Crossref]
  12. R. M. Joseph, S. C. Hagness, A. Taflove, Opt. Lett. 16, 1412 (1991).
    [Crossref] [PubMed]
  13. P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE J. Quantum Electron. 28, 2416 (1992).
    [Crossref]
  14. J. E. Dowling, The Retina (Harvard U. Press, Cambridge, Mass., 1987).
  15. A. Fein, E. Z. Szuts, Photoreceptors: Their Role in Vision (Cambridge U. Press, Cambridge, UK, 1982), p. 84.

1992 (1)

P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE J. Quantum Electron. 28, 2416 (1992).
[Crossref]

1991 (1)

1989 (1)

S. T. Chu, S. K. Chaudhuri, IEEE J. Lightwave Technol. 7, 2033 (1989).
[Crossref]

1988 (1)

A. Taflove, Wave Motion 10, 547 (1988).
[Crossref]

1986 (1)

M. L. Calvo, Bio. Cybernet. 54, 201 (1986).
[Crossref]

1981 (1)

G. Mur, IEEE Trans. Electromagn. Compat. EC-23, 377 (1981).
[Crossref]

1975 (2)

P. M. Tannenbaum, Vision Res. 15, 591 (1975).
[Crossref] [PubMed]

A. Taflove, M. E. Brodwin, IEEE Trans. Microwave Theory Tech. MTT-23, 623 (1975).
[Crossref]

1973 (1)

A. W. Snyder, C. Pask, Vision Res. 13, 1115 (1973).
[Crossref] [PubMed]

1971 (1)

1966 (1)

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

1963 (1)

1951 (1)

Brodwin, M. E.

A. Taflove, M. E. Brodwin, IEEE Trans. Microwave Theory Tech. MTT-23, 623 (1975).
[Crossref]

Calvo, M. L.

M. L. Calvo, Bio. Cybernet. 54, 201 (1986).
[Crossref]

Chaudhuri, S. K.

S. T. Chu, S. K. Chaudhuri, IEEE J. Lightwave Technol. 7, 2033 (1989).
[Crossref]

Chu, S. T.

S. T. Chu, S. K. Chaudhuri, IEEE J. Lightwave Technol. 7, 2033 (1989).
[Crossref]

Dowling, J. E.

J. E. Dowling, The Retina (Harvard U. Press, Cambridge, Mass., 1987).

Enoch, J.

Fein, A.

A. Fein, E. Z. Szuts, Photoreceptors: Their Role in Vision (Cambridge U. Press, Cambridge, UK, 1982), p. 84.

Goorjian, P. M.

P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE J. Quantum Electron. 28, 2416 (1992).
[Crossref]

Hagness, S. C.

P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE J. Quantum Electron. 28, 2416 (1992).
[Crossref]

R. M. Joseph, S. C. Hagness, A. Taflove, Opt. Lett. 16, 1412 (1991).
[Crossref] [PubMed]

Joseph, R. M.

P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE J. Quantum Electron. 28, 2416 (1992).
[Crossref]

R. M. Joseph, S. C. Hagness, A. Taflove, Opt. Lett. 16, 1412 (1991).
[Crossref] [PubMed]

Mur, G.

G. Mur, IEEE Trans. Electromagn. Compat. EC-23, 377 (1981).
[Crossref]

O’Brien, B.

Pask, C.

A. W. Snyder, C. Pask, Vision Res. 13, 1115 (1973).
[Crossref] [PubMed]

Snyder, A. W.

A. W. Snyder, C. Pask, Vision Res. 13, 1115 (1973).
[Crossref] [PubMed]

Szuts, E. Z.

A. Fein, E. Z. Szuts, Photoreceptors: Their Role in Vision (Cambridge U. Press, Cambridge, UK, 1982), p. 84.

Taflove, A.

P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE J. Quantum Electron. 28, 2416 (1992).
[Crossref]

R. M. Joseph, S. C. Hagness, A. Taflove, Opt. Lett. 16, 1412 (1991).
[Crossref] [PubMed]

A. Taflove, Wave Motion 10, 547 (1988).
[Crossref]

A. Taflove, M. E. Brodwin, IEEE Trans. Microwave Theory Tech. MTT-23, 623 (1975).
[Crossref]

Tannenbaum, P. M.

P. M. Tannenbaum, Vision Res. 15, 591 (1975).
[Crossref] [PubMed]

Wijngaard, W.

Yee, K. S.

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

Bio. Cybernet. (1)

M. L. Calvo, Bio. Cybernet. 54, 201 (1986).
[Crossref]

IEEE J. Lightwave Technol. (1)

S. T. Chu, S. K. Chaudhuri, IEEE J. Lightwave Technol. 7, 2033 (1989).
[Crossref]

IEEE J. Quantum Electron. (1)

P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, IEEE J. Quantum Electron. 28, 2416 (1992).
[Crossref]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, IEEE Trans. Antennas Propag. AP-14, 302 (1966).

IEEE Trans. Electromagn. Compat. (1)

G. Mur, IEEE Trans. Electromagn. Compat. EC-23, 377 (1981).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

A. Taflove, M. E. Brodwin, IEEE Trans. Microwave Theory Tech. MTT-23, 623 (1975).
[Crossref]

J. Opt. Soc. Am. (3)

Opt. Lett. (1)

Vision Res. (2)

A. W. Snyder, C. Pask, Vision Res. 13, 1115 (1973).
[Crossref] [PubMed]

P. M. Tannenbaum, Vision Res. 15, 591 (1975).
[Crossref] [PubMed]

Wave Motion (1)

A. Taflove, Wave Motion 10, 547 (1988).
[Crossref]

Other (2)

J. E. Dowling, The Retina (Harvard U. Press, Cambridge, Mass., 1987).

A. Fein, E. Z. Szuts, Photoreceptors: Their Role in Vision (Cambridge U. Press, Cambridge, UK, 1982), p. 84.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Visualization of the magnitude of the electric-field values of the optical standing wave within the retinal rod for TM illumination relative to 1 V/m incident at 475, 505, and 714 nm. White areas, standing-wave peaks; dark areas, standing-wave nulls. The maximum amplification for the TM mode is 2.3.

Fig. 2
Fig. 2

Spatial frequency spectra of the transverse integrated optical standing wave for TM illumination at 714, 505, and 475 nm.

Fig. 3
Fig. 3

Spatial frequency spectra of the transverse integrated optical standing wave for TE illumination at 714, 505, and 475 nm.

Fig. 4
Fig. 4

Spatial frequency spectra for the membrane–fluid structure and the glass–air structure at 714 nm normalized to the spatial frequency spectrum of the respective structures at 505 nm.

Metrics