Abstract

We describe an experimental distributed temperature sensor that uses the temperature dependence of the Brillouin frequency shift. When a 22.2-km sensing length is used, we have observed a temperature resolution of 1°C and have obtained a spatial resolution of 10 m.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, Electron. Lett. 16, 489 (1980).
    [CrossRef]
  2. A. H. Hartog, IEEE J. Lightwave Technol. LT-1, 498 (1983).
    [CrossRef]
  3. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 21, 569 (1985).
    [CrossRef]
  4. D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, Electron. Lett. 25, 914 (1989).
  5. T. Kurashima, T. Horiguchi, M. Tateda, Opt. Lett. 15, 1038 (1990).
    [CrossRef] [PubMed]
  6. See, for example, R. W. Boyd, Nonlinear Optics (Academic, London, 1992), Chap. 8.

1992 (1)

See, for example, R. W. Boyd, Nonlinear Optics (Academic, London, 1992), Chap. 8.

1990 (1)

1989 (1)

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, Electron. Lett. 25, 914 (1989).

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

1983 (1)

A. H. Hartog, IEEE J. Lightwave Technol. LT-1, 498 (1983).
[CrossRef]

1980 (1)

A. J. Rogers, Electron. Lett. 16, 489 (1980).
[CrossRef]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Boyd, R. W.

See, for example, R. W. Boyd, Nonlinear Optics (Academic, London, 1992), Chap. 8.

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, Electron. Lett. 25, 914 (1989).

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, Electron. Lett. 25, 914 (1989).

Hartog, A. H.

A. H. Hartog, IEEE J. Lightwave Technol. LT-1, 498 (1983).
[CrossRef]

Horiguchi, T.

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, Electron. Lett. 25, 914 (1989).

Kurashima, T.

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, Electron. Lett. 25, 914 (1989).

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Rogers, A. J.

A. J. Rogers, Electron. Lett. 16, 489 (1980).
[CrossRef]

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

Tateda, M.

Electron. Lett. (3)

A. J. Rogers, Electron. Lett. 16, 489 (1980).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, Electron. Lett. 21, 569 (1985).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, D. A. Jackson, Electron. Lett. 25, 914 (1989).

IEEE J. Lightwave Technol. (1)

A. H. Hartog, IEEE J. Lightwave Technol. LT-1, 498 (1983).
[CrossRef]

Nonlinear Optics (1)

See, for example, R. W. Boyd, Nonlinear Optics (Academic, London, 1992), Chap. 8.

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement: D1 – D3, photodetectors; AOM, acousto-optic modulator; DC1 – DC3, directional couplers.

Fig. 2
Fig. 2

Oscilloscope traces showing probe intensity monitored at D2 (Fig. 1): (a) probe frequency optimized for fiber at ambient temperature, (b) probe frequency optimized for fiber at 33 °C. The time base is 50 μs/division, which corresponds to 5-km fiber length per division, and the vertical scale is in arbitrary units.

Fig. 3
Fig. 3

Laser beat frequency giving maximum Brillouin gain for the fiber in oven 2 as a function of oven temperature.

Fig. 4
Fig. 4

Plot of probe-beam intensity as a function of laser beat frequency for a point in the center of oven 1 at six different temperatures.

Fig. 5
Fig. 5

Expanded view of an oscilloscope trace of probe intensity as a function of time for a section of fiber surrounding oven 1 (enhanced signal) at 30 °C. The time base is 1 μs/division, which corresponds to 100-m fiber length per division.

Metrics