Abstract

We describe frequency-stabilized laser-diode-pumped Nd:YAG ring lasers locked to a high-transmission and high-finesse reference Fabry–Perot cavity. The cavity has a resonant linewidth of 38.0 kHz, a finesse of 19,400, and a transmission efficiency of 79.4% for the TEM00 mode. We measure the frequency stability by locking two lasers one free spectral range apart and observe the heterodyne beat signal. As a result, the spectral densities noise are reduced to 10mHz/Hz, and a beat linewidth of 193 mHz is obtained. The linewidth is of frequency 0.73 times the Schawlow–Townes limit.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ch. Salomon, D. Hils, J. L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988).
    [Crossref]
  2. G. A. Kerr, N. A. Robertson, J. Hough, Appl. Phys. B 37, 11 (1985).
    [Crossref]
  3. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
    [Crossref]
  4. J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
    [Crossref]
  5. M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien, Opt. Lett. 13, 924 (1988).
    [Crossref]
  6. C.-H. Shin, M. Ohtsu, Opt. Lett. 15, 1455 (1990).
    [Crossref] [PubMed]
  7. K. Nakagawa, M. Kourogi, M. Ohtsu, Opt. Lett. 17, 934 (1992).
    [Crossref] [PubMed]
  8. D. Shoemaker, A. Brillet, C. N. Man, O. Cregut, Opt. Lett. 14, 609 (1989).
    [Crossref] [PubMed]
  9. T. Day, E. K. Gustafson, R. L. Byer, Opt. Lett. 15, 221 (1990).
    [Crossref] [PubMed]
  10. T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
    [Crossref]
  11. T. J. Kane, A. C. Nilsson, R. L. Byer, Opt. Lett. 12, 175 (1987).
    [Crossref] [PubMed]
  12. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
    [Crossref]
  13. D. S. Elliott, R. Roy, S. J. Smith, Phys. Rev. A 26, 12 (1982).
    [Crossref]

1992 (2)

T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[Crossref]

K. Nakagawa, M. Kourogi, M. Ohtsu, Opt. Lett. 17, 934 (1992).
[Crossref] [PubMed]

1990 (2)

1989 (1)

1988 (2)

Ch. Salomon, D. Hils, J. L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988).
[Crossref]

M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien, Opt. Lett. 13, 924 (1988).
[Crossref]

1987 (1)

1985 (1)

G. A. Kerr, N. A. Robertson, J. Hough, Appl. Phys. B 37, 11 (1985).
[Crossref]

1984 (1)

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

1982 (1)

D. S. Elliott, R. Roy, S. J. Smith, Phys. Rev. A 26, 12 (1982).
[Crossref]

1958 (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[Crossref]

Brillet, A.

Byer, R. L.

Cregut, O.

Day, T.

T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[Crossref]

T. Day, E. K. Gustafson, R. L. Byer, Opt. Lett. 15, 221 (1990).
[Crossref] [PubMed]

Desaintfuscien, M.

M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien, Opt. Lett. 13, 924 (1988).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Elliott, D. S.

D. S. Elliott, R. Roy, S. J. Smith, Phys. Rev. A 26, 12 (1982).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Gely, B.

M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien, Opt. Lett. 13, 924 (1988).
[Crossref]

Gustafson, E. K.

T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[Crossref]

T. Day, E. K. Gustafson, R. L. Byer, Opt. Lett. 15, 221 (1990).
[Crossref] [PubMed]

Hall, J. L.

Ch. Salomon, D. Hils, J. L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988).
[Crossref]

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Hils, D.

Ch. Salomon, D. Hils, J. L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988).
[Crossref]

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

Hollberg, L.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

Hough, J.

G. A. Kerr, N. A. Robertson, J. Hough, Appl. Phys. B 37, 11 (1985).
[Crossref]

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Houssin, M.

M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien, Opt. Lett. 13, 924 (1988).
[Crossref]

Jardino, M.

M. Houssin, M. Jardino, B. Gely, M. Desaintfuscien, Opt. Lett. 13, 924 (1988).
[Crossref]

Kane, T. J.

Kerr, G. A.

G. A. Kerr, N. A. Robertson, J. Hough, Appl. Phys. B 37, 11 (1985).
[Crossref]

Kourogi, M.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Ma, L.-S.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

Man, C. N.

Munleyand, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Nakagawa, K.

Nilsson, A. C.

Ohtsu, M.

Rayman, M. D.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

Robertson, N. A.

G. A. Kerr, N. A. Robertson, J. Hough, Appl. Phys. B 37, 11 (1985).
[Crossref]

Roy, R.

D. S. Elliott, R. Roy, S. J. Smith, Phys. Rev. A 26, 12 (1982).
[Crossref]

Salomon, Ch.

Schawlow, A. L.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[Crossref]

Shin, C.-H.

Shoemaker, D.

Smith, S. J.

D. S. Elliott, R. Roy, S. J. Smith, Phys. Rev. A 26, 12 (1982).
[Crossref]

Townes, C. H.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Appl. Phys. B (3)

G. A. Kerr, N. A. Robertson, J. Hough, Appl. Phys. B 37, 11 (1985).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, Appl. Phys. B 33, 179 (1984).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Day, E. K. Gustafson, R. L. Byer, IEEE J. Quantum Electron. 28, 1106 (1992).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Phys. Rev. (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[Crossref]

Phys. Rev. A (1)

D. S. Elliott, R. Roy, S. J. Smith, Phys. Rev. A 26, 12 (1982).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the frequency stabilization system. Both lasers are phase modulated by different frequencies f1 and f2. PD1 is used for frequency stabilization, and PD2 is used to detect the heterodyne beat signal. Ref. FP, Reference Fabry–Perot, DBM’s, double-balanced mixers; BPF, bandpass filter; BEF, band-elimination filter.

Fig. 2
Fig. 2

Transmitted resonant line shape of the reference cavity. The beam of laser 1 is amplitude modulated at a frequency of 200 kHz.

Fig. 3
Fig. 3

Spectral density of frequency noise of (a) laser 1 in frequency locking and (b) laser 2 in frequency locking.

Fig. 4
Fig. 4

Heterodyne beat spectrum when two lasers are frequency stabilized.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V s = ν ( f ) 16 L π c F 2 T R × M J 0 ( m ) J 1 ( m ) G a I max [ 1 + ( 2 f Δ ν c ) 2 ] - 1 / 2 ,
V n = G a 2 2 e ( I dc + I amp ) ,

Metrics