Abstract

A high-purity synthetic fused silica sample (Suprasil 2) was irradiated by a KrF laser at 248 nm, 300 Hz, and 500 mJ/cm2. Transmission at 248 nm, transmission at 210 nm, and fluorescence at 650 nm were monitored in real time. The sample starts out in a weakly absorbing state. Then, after several million pulses, it experiences a sudden increase in 248-nm absorption with accompanying dramatic changes in its relaxation and fluorescence behavior. Further irradiation leads to (partial) bleaching of the UV absorption.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Stathis, M. A. Kastner, Philos. Mag. B 49, 357 (1984); Phys. Rev. B 29, 7079 (1984); Phys. Rev. B, 35, 2972 (1987).
    [Crossref] [PubMed]
  2. T. E. Tsai, D. L. Griscom, E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).
    [Crossref] [PubMed]
  3. G. C. Escher, Proc. Soc. Photo-Opt. Instrum. Eng. 998, 30 (1988).
  4. M. Rothschild, D. J. Ehrlich, D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
    [Crossref]
  5. K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
    [Crossref]
  6. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, Appl. Opt. 27, 3124 (1988).
    [Crossref] [PubMed]
  7. R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
    [Crossref]
  8. T. E. Tsai, D. L. Griscom, J. Non-Cryst. Solids 131–133, 1240 (1991).
    [Crossref]
  9. W. P. Leung, M. Kulkarni, D. Krajnovich, A. C. Tam, Appl. Phys. Lett. 58, 551 (1991).
    [Crossref]
  10. N. LeClerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K.-O. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, Opt. Lett. 16, 940 (1991); N. LeClerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, A. C. Tam, Appl. Phys. Lett. 59, 3369 (1991).
    [Crossref] [PubMed]
  11. The performance of six glass types was summarized by us at the 1992 Boulder Damage Symposium, Proc. Soc. Photo-Opt. Instrum. Eng.1848 (to be published).
  12. R. A. Weeks, E. Sonder, in Paramagnetic Resonance, W. Low, ed. (Academic, New York, 1963), Vol. 2, p. 869.
  13. For a discussion of proposed red fluorescence assignments, see D. L. Griscom, J. Ceram. Soc. Jpn. 99, 923 (1991).
    [Crossref]
  14. High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
    [Crossref] [PubMed]
  15. Although not obvious on the compressed scale of Figs. 1 and 3, the following observations are true. In Stage I (before SAT), F650 starts out near zero after each pause and grows in over the first few hundred pulses. In Stage II (strong-absorption region), F650 actually achieves its maximum value on the first laser pulse after each pause. In Stage III (forced recovery), the behavior is similar to Stage I.

1991 (4)

T. E. Tsai, D. L. Griscom, J. Non-Cryst. Solids 131–133, 1240 (1991).
[Crossref]

W. P. Leung, M. Kulkarni, D. Krajnovich, A. C. Tam, Appl. Phys. Lett. 58, 551 (1991).
[Crossref]

N. LeClerc, C. Pfleiderer, H. Hitzler, J. Wolfrum, K.-O. Greulich, S. Thomas, H. Fabian, R. Takke, W. Englisch, Opt. Lett. 16, 940 (1991); N. LeClerc, C. Pfleiderer, J. Wolfrum, K. Greulich, W. P. Leung, M. Kulkarni, A. C. Tam, Appl. Phys. Lett. 59, 3369 (1991).
[Crossref] [PubMed]

For a discussion of proposed red fluorescence assignments, see D. L. Griscom, J. Ceram. Soc. Jpn. 99, 923 (1991).
[Crossref]

1990 (1)

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

1989 (1)

M. Rothschild, D. J. Ehrlich, D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[Crossref]

1988 (4)

K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
[Crossref]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, Appl. Opt. 27, 3124 (1988).
[Crossref] [PubMed]

T. E. Tsai, D. L. Griscom, E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).
[Crossref] [PubMed]

G. C. Escher, Proc. Soc. Photo-Opt. Instrum. Eng. 998, 30 (1988).

1984 (1)

J. H. Stathis, M. A. Kastner, Philos. Mag. B 49, 357 (1984); Phys. Rev. B 29, 7079 (1984); Phys. Rev. B, 35, 2972 (1987).
[Crossref] [PubMed]

Abe, Y.

K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
[Crossref]

Arai, K.

K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
[Crossref]

Brimacombe, R. K.

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[Crossref]

Englisch, W.

Escher, G. C.

G. C. Escher, Proc. Soc. Photo-Opt. Instrum. Eng. 998, 30 (1988).

Fabian, H.

Friebele, E. J.

T. E. Tsai, D. L. Griscom, E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).
[Crossref] [PubMed]

Greulich, K.-O.

Griscom, D. L.

T. E. Tsai, D. L. Griscom, J. Non-Cryst. Solids 131–133, 1240 (1991).
[Crossref]

For a discussion of proposed red fluorescence assignments, see D. L. Griscom, J. Ceram. Soc. Jpn. 99, 923 (1991).
[Crossref]

T. E. Tsai, D. L. Griscom, E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).
[Crossref] [PubMed]

Hama, Y.

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

Hitzler, H.

Hosono, H.

K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
[Crossref]

Ikeda, A.

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

Imagawa, H.

K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
[Crossref]

Imai, H.

K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
[Crossref]

Kastner, M. A.

J. H. Stathis, M. A. Kastner, Philos. Mag. B 49, 357 (1984); Phys. Rev. B 29, 7079 (1984); Phys. Rev. B, 35, 2972 (1987).
[Crossref] [PubMed]

Krajnovich, D.

W. P. Leung, M. Kulkarni, D. Krajnovich, A. C. Tam, Appl. Phys. Lett. 58, 551 (1991).
[Crossref]

High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
[Crossref] [PubMed]

Kulkarni, M.

W. P. Leung, M. Kulkarni, D. Krajnovich, A. C. Tam, Appl. Phys. Lett. 58, 551 (1991).
[Crossref]

High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
[Crossref] [PubMed]

LeClerc, N.

Leopold, K. E.

Leung, W.

High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
[Crossref] [PubMed]

Leung, W. P.

W. P. Leung, M. Kulkarni, D. Krajnovich, A. C. Tam, Appl. Phys. Lett. 58, 551 (1991).
[Crossref]

Mihailov, S.

Munekuni, S.

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

Nagasawa, K.

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

Ohki, Y.

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

Pfleiderer, C.

Rothschild, M.

M. Rothschild, D. J. Ehrlich, D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[Crossref]

Shaver, D. C.

M. Rothschild, D. J. Ehrlich, D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[Crossref]

Shimogaichi, Y.

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

Sonder, E.

R. A. Weeks, E. Sonder, in Paramagnetic Resonance, W. Low, ed. (Academic, New York, 1963), Vol. 2, p. 869.

Spool, A.

High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
[Crossref] [PubMed]

Stathis, J. H.

J. H. Stathis, M. A. Kastner, Philos. Mag. B 49, 357 (1984); Phys. Rev. B 29, 7079 (1984); Phys. Rev. B, 35, 2972 (1987).
[Crossref] [PubMed]

Takke, R.

Tam, A. C.

W. P. Leung, M. Kulkarni, D. Krajnovich, A. C. Tam, Appl. Phys. Lett. 58, 551 (1991).
[Crossref]

High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
[Crossref] [PubMed]

Taylor, R. S.

Thomas, S.

Tohmon, R.

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

Tsai, T. E.

T. E. Tsai, D. L. Griscom, J. Non-Cryst. Solids 131–133, 1240 (1991).
[Crossref]

T. E. Tsai, D. L. Griscom, E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).
[Crossref] [PubMed]

Weeks, R. A.

R. A. Weeks, E. Sonder, in Paramagnetic Resonance, W. Low, ed. (Academic, New York, 1963), Vol. 2, p. 869.

Wolfrum, J.

York, B.

High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Rothschild, D. J. Ehrlich, D. C. Shaver, Appl. Phys. Lett. 55, 1276 (1989).
[Crossref]

K. Arai, H. Imai, H. Hosono, Y. Abe, H. Imagawa, Appl. Phys. Lett. 53, 1891 (1988).
[Crossref]

W. P. Leung, M. Kulkarni, D. Krajnovich, A. C. Tam, Appl. Phys. Lett. 58, 551 (1991).
[Crossref]

J. Appl. Phys. (1)

R. Tohmon, A. Ikeda, Y. Shimogaichi, S. Munekuni, Y. Ohki, K. Nagasawa, Y. Hama, J. Appl. Phys. 67, 1302 (1990).
[Crossref]

J. Ceram. Soc. Jpn. (1)

For a discussion of proposed red fluorescence assignments, see D. L. Griscom, J. Ceram. Soc. Jpn. 99, 923 (1991).
[Crossref]

J. Non-Cryst. Solids (1)

T. E. Tsai, D. L. Griscom, J. Non-Cryst. Solids 131–133, 1240 (1991).
[Crossref]

Opt. Lett. (1)

Philos. Mag. B (1)

J. H. Stathis, M. A. Kastner, Philos. Mag. B 49, 357 (1984); Phys. Rev. B 29, 7079 (1984); Phys. Rev. B, 35, 2972 (1987).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

T. E. Tsai, D. L. Griscom, E. J. Friebele, Phys. Rev. Lett. 61, 444 (1988).
[Crossref] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. C. Escher, Proc. Soc. Photo-Opt. Instrum. Eng. 998, 30 (1988).

Other (4)

The performance of six glass types was summarized by us at the 1992 Boulder Damage Symposium, Proc. Soc. Photo-Opt. Instrum. Eng.1848 (to be published).

R. A. Weeks, E. Sonder, in Paramagnetic Resonance, W. Low, ed. (Academic, New York, 1963), Vol. 2, p. 869.

High-purity single-crystal CaF2 experiences negligible transmission loss under the conditions of these experiments. See D. Krajnovich, M. Kulkarni, W. Leung, A. C. Tam, A. Spool, B. York, Appl. Opt.31, 6062 (1992).
[Crossref] [PubMed]

Although not obvious on the compressed scale of Figs. 1 and 3, the following observations are true. In Stage I (before SAT), F650 starts out near zero after each pause and grows in over the first few hundred pulses. In Stage II (strong-absorption region), F650 actually achieves its maximum value on the first laser pulse after each pause. In Stage III (forced recovery), the behavior is similar to Stage I.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sample behavior in the vicinity of the strong-absorption transition. The 300-Hz irradiation was interrupted for ~30 s at (c); 1 min at (a), (b), and (d); 20 min at (e); 3 min at (f); and 2 h at (g). The fluorescence data to the right of the dashed line have been multiplied by 0.5 to keep on scale. For reference, F650 was 0.25 V for the virgin sample.

Fig. 2
Fig. 2

UV spectra and self-relaxation (a) after 3.7 million shots, (b) after 7.3 million shots, and (c) after 49.3 million shots. Spectra were taken at the indicated times after stopping the laser. The top curve in each panel is a spectrum of the unirradiated sample.

Fig. 3
Fig. 3

Sample behavior in the stable forced-recovery region. Irradiation was interrupted for ~2 min at (a), (c), and (e); 30 s at (d); and 10 s at (b). Note that T248 is higher than expected from reflection losses alone. This artifact is caused by deformation of the sample surfaces (compaction). The true value of T248 is ~90% [see Fig. 2(c)].

Metrics