Abstract

An all-optical power-controlled switch is described. It is based on the modulation of self-diffracted beams by a control beam that modifies the third-order grating excited in a nonlinear medium. The experimental results obtained by using Cd(S, Se)-doped glasses are in agreement with the theoretical predictions. For an application, we also report the generation of dark pulses with subnanosecond width based on the studied process.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.
  2. R. K. Jain, D. G. Steel, Opt. Commun. 43, 72 (1982).
    [Crossref]
  3. F. Henneberger, W. U. Waggon, J. Puls, C. Spiegelberg, Appl. Phys. B 46, 19 (1988).
    [Crossref]
  4. H. Ma, F. Li, Appl. Phys. B 50, 405 (1990).
    [Crossref]
  5. R. K. Jain, R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).
    [Crossref]
  6. D. A. B. Miller, C. T. Seaton, N. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
    [Crossref]
  7. N. G. Nilsson, Appl. Phys. Lett. 33, 653 (1978).
    [Crossref]
  8. This is valid because excitonic states and possible many-body effects are not included in our model.
  9. C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), p. 321.
    [Crossref]
  10. L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, C. B. de Araújo, IEEE J. Quantum Electron. 26, 1277 (1990).
    [Crossref]
  11. H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
    [Crossref]
  12. P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).
    [Crossref]
  13. M. Kull, J. L. Coutaz, J. Opt. Soc. Am. B 7, 1463 (1990).
    [Crossref]
  14. The confinement of electron and hole states affects the nonlinearity of semiconductor-doped glasses. However, the band-filling model gives a reasonable picture of the commercial glasses used here (see Refs. 12 and 13).
  15. N. D. Hung, Y. H. Meyer, Appl. Phys. B 53, 226 (1991).
    [Crossref]
  16. D. Krokell, N. J. Halas, G. Giuliani, D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).
    [Crossref]
  17. H. Ma, A. S. L. Gomes, C. B. de Araújo, J. Opt. Soc. Am. B 9, 2230 (1992).
    [Crossref]
  18. H. Ma, A. S. L. Gomes, C. B. de Araújo, Opt. Commun. 87, 19 (1992).
    [Crossref]

1992 (2)

H. Ma, A. S. L. Gomes, C. B. de Araújo, Opt. Commun. 87, 19 (1992).
[Crossref]

H. Ma, A. S. L. Gomes, C. B. de Araújo, J. Opt. Soc. Am. B 9, 2230 (1992).
[Crossref]

1991 (2)

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

N. D. Hung, Y. H. Meyer, Appl. Phys. B 53, 226 (1991).
[Crossref]

1990 (3)

H. Ma, F. Li, Appl. Phys. B 50, 405 (1990).
[Crossref]

L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, C. B. de Araújo, IEEE J. Quantum Electron. 26, 1277 (1990).
[Crossref]

M. Kull, J. L. Coutaz, J. Opt. Soc. Am. B 7, 1463 (1990).
[Crossref]

1988 (2)

F. Henneberger, W. U. Waggon, J. Puls, C. Spiegelberg, Appl. Phys. B 46, 19 (1988).
[Crossref]

D. Krokell, N. J. Halas, G. Giuliani, D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).
[Crossref]

1987 (1)

1983 (1)

1982 (1)

R. K. Jain, D. G. Steel, Opt. Commun. 43, 72 (1982).
[Crossref]

1981 (1)

D. A. B. Miller, C. T. Seaton, N. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

1978 (1)

N. G. Nilsson, Appl. Phys. Lett. 33, 653 (1978).
[Crossref]

Acioli, L. H.

L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, C. B. de Araújo, IEEE J. Quantum Electron. 26, 1277 (1990).
[Crossref]

Coutaz, J. L.

de Araújo, C. B.

H. Ma, A. S. L. Gomes, C. B. de Araújo, J. Opt. Soc. Am. B 9, 2230 (1992).
[Crossref]

H. Ma, A. S. L. Gomes, C. B. de Araújo, Opt. Commun. 87, 19 (1992).
[Crossref]

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, C. B. de Araújo, IEEE J. Quantum Electron. 26, 1277 (1990).
[Crossref]

Flytzanis, C.

P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).
[Crossref]

C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), p. 321.
[Crossref]

Giuliani, G.

D. Krokell, N. J. Halas, G. Giuliani, D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).
[Crossref]

Gomes, A. S. L.

H. Ma, A. S. L. Gomes, C. B. de Araújo, J. Opt. Soc. Am. B 9, 2230 (1992).
[Crossref]

H. Ma, A. S. L. Gomes, C. B. de Araújo, Opt. Commun. 87, 19 (1992).
[Crossref]

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, C. B. de Araújo, IEEE J. Quantum Electron. 26, 1277 (1990).
[Crossref]

Grischkowsky, D.

D. Krokell, N. J. Halas, G. Giuliani, D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).
[Crossref]

Hache, F.

C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), p. 321.
[Crossref]

Halas, N. J.

D. Krokell, N. J. Halas, G. Giuliani, D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).
[Crossref]

Henneberger, F.

F. Henneberger, W. U. Waggon, J. Puls, C. Spiegelberg, Appl. Phys. B 46, 19 (1988).
[Crossref]

Hung, N. D.

N. D. Hung, Y. H. Meyer, Appl. Phys. B 53, 226 (1991).
[Crossref]

Jain, R. K.

R. K. Jain, R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).
[Crossref]

R. K. Jain, D. G. Steel, Opt. Commun. 43, 72 (1982).
[Crossref]

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.

Klein, M. B.

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.

Klein, M. C.

C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), p. 321.
[Crossref]

Krokell, D.

D. Krokell, N. J. Halas, G. Giuliani, D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).
[Crossref]

Kull, M.

Li, F.

H. Ma, F. Li, Appl. Phys. B 50, 405 (1990).
[Crossref]

Lind, R. C.

Lukasik, J.

Ma, H.

H. Ma, A. S. L. Gomes, C. B. de Araújo, Opt. Commun. 87, 19 (1992).
[Crossref]

H. Ma, A. S. L. Gomes, C. B. de Araújo, J. Opt. Soc. Am. B 9, 2230 (1992).
[Crossref]

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

H. Ma, F. Li, Appl. Phys. B 50, 405 (1990).
[Crossref]

Meyer, Y. H.

N. D. Hung, Y. H. Meyer, Appl. Phys. B 53, 226 (1991).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, C. T. Seaton, N. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Nilsson, N. G.

N. G. Nilsson, Appl. Phys. Lett. 33, 653 (1978).
[Crossref]

Prise, N. E.

D. A. B. Miller, C. T. Seaton, N. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Puls, J.

F. Henneberger, W. U. Waggon, J. Puls, C. Spiegelberg, Appl. Phys. B 46, 19 (1988).
[Crossref]

Ricard, D.

P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).
[Crossref]

C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), p. 321.
[Crossref]

Rios Leite, J. R.

L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, C. B. de Araújo, IEEE J. Quantum Electron. 26, 1277 (1990).
[Crossref]

Roussignol, P.

P. Roussignol, D. Ricard, J. Lukasik, C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).
[Crossref]

C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), p. 321.
[Crossref]

Seaton, C. T.

D. A. B. Miller, C. T. Seaton, N. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Smith, S. D.

D. A. B. Miller, C. T. Seaton, N. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Spiegelberg, C.

F. Henneberger, W. U. Waggon, J. Puls, C. Spiegelberg, Appl. Phys. B 46, 19 (1988).
[Crossref]

Steel, D. G.

R. K. Jain, D. G. Steel, Opt. Commun. 43, 72 (1982).
[Crossref]

Waggon, W. U.

F. Henneberger, W. U. Waggon, J. Puls, C. Spiegelberg, Appl. Phys. B 46, 19 (1988).
[Crossref]

Appl. Phys. B (3)

F. Henneberger, W. U. Waggon, J. Puls, C. Spiegelberg, Appl. Phys. B 46, 19 (1988).
[Crossref]

H. Ma, F. Li, Appl. Phys. B 50, 405 (1990).
[Crossref]

N. D. Hung, Y. H. Meyer, Appl. Phys. B 53, 226 (1991).
[Crossref]

Appl. Phys. Lett. (2)

H. Ma, A. S. L. Gomes, C. B. de Araújo, Appl. Phys. Lett. 59, 2666 (1991).
[Crossref]

N. G. Nilsson, Appl. Phys. Lett. 33, 653 (1978).
[Crossref]

IEEE J. Quantum Electron. (1)

L. H. Acioli, A. S. L. Gomes, J. R. Rios Leite, C. B. de Araújo, IEEE J. Quantum Electron. 26, 1277 (1990).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

H. Ma, A. S. L. Gomes, C. B. de Araújo, Opt. Commun. 87, 19 (1992).
[Crossref]

R. K. Jain, D. G. Steel, Opt. Commun. 43, 72 (1982).
[Crossref]

Phys. Rev. Lett. (2)

D. A. B. Miller, C. T. Seaton, N. E. Prise, S. D. Smith, Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

D. Krokell, N. J. Halas, G. Giuliani, D. Grischkowsky, Phys. Rev. Lett. 60, 29 (1988).
[Crossref]

Other (4)

The confinement of electron and hole states affects the nonlinearity of semiconductor-doped glasses. However, the band-filling model gives a reasonable picture of the commercial glasses used here (see Refs. 12 and 13).

R. K. Jain, M. B. Klein, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 307.

This is valid because excitonic states and possible many-body effects are not included in our model.

C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), p. 321.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the beams’ configuration used in the experiment.

Fig. 2
Fig. 2

Diffraction efficiency, in arbitrary units, as a function of the reduced free-electron density driven by the control beam.

Fig. 3
Fig. 3

(a) Diffraction efficiency, in arbitrary units, as a function of the modulation beam intensity at 532 nm (2.34 eV); the sample energy gap was determined to be 2.09 eV, which corresponds to 1% of transmission for a 3-mm-thick glass. (b), (c) Diffracted signals at 532 nm (2.34 eV) as a function of the modulation beam intensity at 532 nm; the energy gaps for samples CS 3-67 and CS 3-68 are 2.28 and 2.37 eV, respectively. The energy fluence of each pump beam was 3 mJ/cm2 (Δ) and 0.8 mJ/cm2 (□). The solid curves are a guide to the eye.

Fig. 4
Fig. 4

Temporal profile of the optical pulses used to demonstrate the possibility of dark-pulse generation (sample CS 2-62). (a) Incident pump (top curve) and control (bottom curve) beams; (b) diffracted beam profile in presence of the control beam. Horizontal scale: 1 ns/division.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f i = 1 exp [ β ( μ m i a i ) ] + 1 , i = e , h ,

Metrics