Abstract

I describe a lensless imaging system in which the image is formed by the mutual-intensity function instead of by a conventional intensity distribution. Both theoretical and experimental results are given.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.
  2. E. N. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, P.-C. Sun, Opt. Lett. 16, 1820 (1991).
    [CrossRef] [PubMed]
  3. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, J. Opt. Soc. Am. A 9, 1148 (1992).
    [CrossRef]
  4. L. Mertz, Transformations in Optics (Wiley, New York, 1965), Chap. 4.
  5. H. R. Worthington, J. Opt. Soc. Am. 56, 1397 (1966).
    [CrossRef]
  6. K. V. Konjaev, Phys. Lett. 24A, 490 (1967).
  7. O. Bryngdahl, A. Lohmann, J. Opt. Soc. Am. 58, 625 (1968).
    [CrossRef]
  8. A. Kozma, N. Massey, Appl. Opt. 8, 393 (1969).
    [CrossRef] [PubMed]
  9. O. Bryngdahl, A. Lohmann, J. Opt. Soc. Am. 60, 281 (1970).
    [CrossRef]
  10. E. N. Leith, G. J. Swanson, Appl. Opt. 20, 3081 (1981).
    [CrossRef] [PubMed]

1992 (1)

1991 (1)

1981 (1)

1970 (1)

1969 (1)

1968 (1)

1967 (1)

K. V. Konjaev, Phys. Lett. 24A, 490 (1967).

1966 (1)

Bryngdahl, O.

Chen, C.

Chen, H.

Chen, Y.

Dilworth, D.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 5.

Konjaev, K. V.

K. V. Konjaev, Phys. Lett. 24A, 490 (1967).

Kozma, A.

Leith, E.

Leith, E. N.

Lohmann, A.

Lopez, J.

Massey, N.

Mertz, L.

L. Mertz, Transformations in Optics (Wiley, New York, 1965), Chap. 4.

Rudd, J.

Sun, P.-C.

Swanson, G. J.

Valdmanis, J.

Vossler, G.

Worthington, H. R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

System for mutual-intensity holography.

Fig. 2
Fig. 2

Spreading of coherence area by Fresnel propagation.

Fig. 3
Fig. 3

Setup for the lensless imaging system showing object and reference beam paths. S, quasi-monochromatic extended source; B.S., beam splitter; M, mirror; O, object; H, hologram.

Fig. 4
Fig. 4

Image obtained with a coherent point source showing the Fresnel diffraction pattern of the object on the hologram plane. This is the best image that can be recorded at a remote distance d.

Fig. 5
Fig. 5

Image obtained from the lensless imaging system.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

u o 1 ( x ; x s ) = δ ( x x s ) exp [ j k 2 z ( x x ) 2 ] d x = exp [ j k 2 z ( x x s ) 2 ] ,
u o 2 ( x ; x s ) = t ( x ) exp [ j k 2 z ( x x s ) 2 ] × exp [ j k 2 d ( x x ) 2 ] d x ,
u r ( x ; x s ) = exp [ j k 2 z ( x x s ) 2 ] .
u ( x ; x s ) = u o 2 ( x ; x s ) exp ( j 2 π f o x ) + u r ( x ; x s ) ,
I = D / 2 D / 2 | u | 2 d x s = D / 2 D / 2 [ | u o 2 | 2 + | u r | 2 + u o 2 u r * exp ( j 2 π f o x ) + u o 2 * u r exp ( j 2 π f o x ) ] d x s ,
u R ( x ) = D / 2 D / 2 u o 2 u r * d x s = t ( x ) exp [ j k 2 z ( x 2 x 2 ) ] exp [ j k 2 d ( x x ) 2 ] × sinc [ D λ z ( x x ) ] d x ,
u R ( x ) = t ( x ) exp [ j k 2 z ( x 2 x 2 ) ] sinc [ D λ z ( x x ) ] d x
u R ( x ) exp ( j k 2 z x 2 ) = t ( x ) exp ( j k 2 z x 2 ) sinc [ D λ z ( x x ) ] d x .
u R ( x ) = t ( x ) sinc [ D λ z ( x x ) ] d x = t ( x ) h ( x x ) d x ,

Metrics