Abstract

We describe the picosecond nonlinear optical response of a metal–dielectric composite made by implanting Cu ions in fused silica. The implanted Cu ions aggregate during implantation to form nanometer-diameter clusters in a dense, thin (~150 nm) layer just beneath the surface of the substrate. The third-order susceptibility χ(3) has an electronic component with a magnitude of the order of 10−8 esu and is enhanced for laser wavelengths near the surface plasmon resonance of the copper colloids.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Neeves, M. H. Birnboim, J. Opt. Soc. Am. B 6, 787 (1989).
    [CrossRef]
  2. F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 47, 347 (1988).
    [CrossRef]
  3. M. J. Bloemer, J. W. Haus, P. R. Ashley, J. Opt. Soc. Am. B 7, 790 (1990).
    [CrossRef]
  4. J. W. Haus, N. Kalyaniwalla, R. Inguva, M. Bloemer, C. M. Bowden, J. Opt. Soc. Am. B 6, 797 (1989).
    [CrossRef]
  5. J. W. Haus, R. Inguva, C. M. Bowden, Phys. Rev. A 40, 5729 (1989).
    [CrossRef] [PubMed]
  6. P. D. Townsend, Rep. Prog. Phys. 50, 501 (1987).
    [CrossRef]
  7. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 12.
  8. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 4.
  9. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  10. L. Yang, Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1993).
  11. R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
    [CrossRef]
  12. G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
    [CrossRef]
  13. X. C. Zeng, P. M. Hui, D. J. Bergman, D. Stroud, Phys. Rev. B 39, 224 (1989).
  14. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, M. J. Andrejco, Opt. Lett. 14, 1140 (1989).
    [CrossRef] [PubMed]
  15. G. I. Stegeman, R. H. Stolen, J. Opt. Soc. Am. B 6, 652 (1989).
    [CrossRef]

1992 (1)

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

1990 (2)

M. J. Bloemer, J. W. Haus, P. R. Ashley, J. Opt. Soc. Am. B 7, 790 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1989 (6)

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

1987 (1)

P. D. Townsend, Rep. Prog. Phys. 50, 501 (1987).
[CrossRef]

1986 (1)

G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
[CrossRef]

Andrejco, M. J.

Ashley, P. R.

Bergman, D. J.

X. C. Zeng, P. M. Hui, D. J. Bergman, D. Stroud, Phys. Rev. B 39, 224 (1989).

Birnboim, M. H.

Bloemer, M.

Bloemer, M. J.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 12.

Bowden, C. M.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 4.

DeLong, K. W.

Eesley, G. L.

G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
[CrossRef]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Haglund, R. F.

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

Haus, J. W.

Henderson, D. O.

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 12.

Hui, P. M.

X. C. Zeng, P. M. Hui, D. J. Bergman, D. Stroud, Phys. Rev. B 39, 224 (1989).

Inguva, R.

Kalyaniwalla, N.

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

Magruder, R. H.

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

Mizrahi, V.

Morgan, S. H.

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

Neeves, A. E.

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Saifi, M. A.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Stegeman, G. I.

Stolen, R. H.

Stroud, D.

X. C. Zeng, P. M. Hui, D. J. Bergman, D. Stroud, Phys. Rev. B 39, 224 (1989).

Townsend, P. D.

P. D. Townsend, Rep. Prog. Phys. 50, 501 (1987).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Weller, R. A.

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

Yang, L.

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

L. Yang, Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1993).

Zeng, X. C.

X. C. Zeng, P. M. Hui, D. J. Bergman, D. Stroud, Phys. Rev. B 39, 224 (1989).

Zuhr, R. A.

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

Appl. Phys. A (1)

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 47, 347 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

J. Opt. Soc. Am. B (4)

Nucl. Instrum. Methods Phys. Res. B (1)

R. F. Haglund, R. H. Magruder, S. H. Morgan, D. O. Henderson, R. A. Weller, L. Yang, R. A. Zuhr, Nucl. Instrum. Methods Phys. Res. B 65, 405 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. W. Haus, R. Inguva, C. M. Bowden, Phys. Rev. A 40, 5729 (1989).
[CrossRef] [PubMed]

Phys. Rev. B (2)

G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
[CrossRef]

X. C. Zeng, P. M. Hui, D. J. Bergman, D. Stroud, Phys. Rev. B 39, 224 (1989).

Rep. Prog. Phys. (1)

P. D. Townsend, Rep. Prog. Phys. 50, 501 (1987).
[CrossRef]

Other (3)

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 12.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 4.

L. Yang, Ph.D. dissertation (Vanderbilt University, Nashville, Tenn., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Bright-field TEM image of metallic Cu nanoclusters in a fused-silica matrix. Inset: electron diffraction pattern from the sample, showing the rings characteristic of face-centered-cubic copper in random crystallographic orientation.

Fig. 2
Fig. 2

Z-scan spectrum of the sample, showing normalized far-field intensity as a function of distance from the focal point of the lens (solid curve). The smooth curve is the best fit to the data using Eq. (2).

Fig. 3
Fig. 3

Measured values of Re[χ(3)] in Gaussian units (esu) for the sample shown in Fig. 1, superimposed on the linear absorbance spectrum (right-hand axis).

Tables (1)

Tables Icon

Table 1 Characteristics of Implanted Sample

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + n 2 I , n 2 ( cm 2 W 1 ) = 0 . 0395 n 0 2 χ ( 3 ) ( esu ) ,
I det = 1 1 + β I 0 L 1 exp ( α L ) α ( 1 + ζ 2 ) × [ C 1 z ( 1 + ζ 2 ) 2 + C 2 z ( 1 + ζ 2 ) 1 ] 2 ,
C 1 = 2 L P n 2 π n 0 2 r 0 4 , C 2 = L P K T π n 0 2 r 0 2 , ζ = z z 0 , z 0 = π r 0 2 λ .
0 . 1 F = 2 λ β n 2 0 . 3 .

Metrics