Abstract

The effect of rapid phase change on chirped continuum pulses is studied with a frequency-domain interferometer. Because of the chirp, temporal evolution of the optical Kerr response in CS2 is projected into difference phase spectra. The chirped continuum shows spectral shifts that are due to induced phase modulation even when the continuum has a flat spectrum.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Bor, B. Racz, Appl. Opt. 24, 3440 (1985 ), and references therein.
    [CrossRef] [PubMed]
  2. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, Opt. Lett. 12, 483 (1987).
    [CrossRef] [PubMed]
  3. E. Tokunaga, A. Terasaki, T. Kobayashi, Opt. Lett. 17, 1131 (1992).
    [CrossRef] [PubMed]
  4. T. Hattori, T. Kobayashi, J. Chem. Phys. 94, 3332 (1991).
    [CrossRef]
  5. See, for example J.-C. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985); J. E. Rothenberg, D. Grischkowsky, J. Opt. Soc. Am. B 2, 626 (1985); K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
    [CrossRef] [PubMed]
  6. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, W. J. Tomlinson, Opt. Lett. 8, 1 (1983).
    [CrossRef] [PubMed]
  7. See, for example, R. R. Alfano, P. P. Ho, IEEE J. Quantum Electron. 24, 351 (1988); T. Hattori, A. Terasaki, T. Kobayashi, T. Wada, A. Yamada, H. Sasabe, J. Chem. Phys. 95, 937 (1991).
    [CrossRef]

1992

1991

T. Hattori, T. Kobayashi, J. Chem. Phys. 94, 3332 (1991).
[CrossRef]

1988

See, for example, R. R. Alfano, P. P. Ho, IEEE J. Quantum Electron. 24, 351 (1988); T. Hattori, A. Terasaki, T. Kobayashi, T. Wada, A. Yamada, H. Sasabe, J. Chem. Phys. 95, 937 (1991).
[CrossRef]

1987

1985

1983

Alfano, R. R.

See, for example, R. R. Alfano, P. P. Ho, IEEE J. Quantum Electron. 24, 351 (1988); T. Hattori, A. Terasaki, T. Kobayashi, T. Wada, A. Yamada, H. Sasabe, J. Chem. Phys. 95, 937 (1991).
[CrossRef]

Becker, P. C.

Bor, Z.

Brito Cruz, C. H.

Diels, J.-C.

Fontaine, J. J.

Fork, R. L.

Hattori, T.

T. Hattori, T. Kobayashi, J. Chem. Phys. 94, 3332 (1991).
[CrossRef]

Hirlimann, C.

Ho, P. P.

See, for example, R. R. Alfano, P. P. Ho, IEEE J. Quantum Electron. 24, 351 (1988); T. Hattori, A. Terasaki, T. Kobayashi, T. Wada, A. Yamada, H. Sasabe, J. Chem. Phys. 95, 937 (1991).
[CrossRef]

Kobayashi, T.

McMichael, I. C.

Racz, B.

Shank, C. V.

Simoni, F.

Terasaki, A.

Tokunaga, E.

Tomlinson, W. J.

Yen, R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Signals for CS2 without delay-time correction. (a) DTS (upper solid curve) and probe spectra with excitation (dashed curve) and without excitation (lower solid curve) by the pump–probe measurement. (b) DPS (open circles), interference spectra with (dashed curve) and without (lower solid curve) excitation, and the difference interference spectrum between them (upper solid curve). Here the interference is normalized by the probe spectrum without excitation.

Fig. 2
Fig. 2

DTS and DPS in CS2 obtained by chirped continuum pulses at 220-, 280-, and 360-fs time delays without delay-time correction. Zero delay is defined at the maximum overlap between the pump and probe at 620 nm.

Fig. 3
Fig. 3

The tν curve of the continuum, which was obtained from the results in Fig. 2 by plotting the time delays against the wavelengths at the peaks of the DTS. The solid curve is the fitting function (see text).

Fig. 4
Fig. 4

Results of the simulation (see text). The probe spectrum and the DTS (solid curve) and DPS (dashed curve) are shown at −120-, 0-, 120-fs time delays. The calibrated time is scaled on the top horizontal line.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( ω ω 0 ) = E 0 ( ω ω 0 ) exp [ i ρ ( ω ω 0 ) 2 ] ,
E ( t ) = F 1 [ E ( ω ω 0 ) ] = E 0 ( i γ ) 1 / 2 exp [ i ω 0 t ( i γ ) t 2 ] ,
F [ E ( t ) ] = R ( ω ) exp [ i Φ ( ω ) ] , F { E ( t ) exp [ i Δ Φ ( t τ ) ] } = R ( ω , τ ) exp [ i Φ ( ω , τ ) ] , Δ T / T ( ω , τ ) = [ R 2 ( ω , τ ) R 2 ( ω ) ] / R 2 ( ω ) , Δ Φ ( ω , τ ) = Φ ( ω , τ ) Φ ( ω ) ,
Δ Φ ( t ) = δ exp ( t 2 / τ e 2 ) , δ 1 , E ( t ) exp [ i Δ Φ ( t ) ] E ( t ) [ 1 + i δ exp ( t 2 / τ e 2 ) ] .
F [ E ( t ) + i E ( t ) Δ Φ ( t ) ] = E ( ω ) + i δ E ex ( ω ) , E ex ( ω ) = E 0 π 1 / 2 ( i γ ) 1 / 2 ( 1 / τ e 2 + i γ ) 1 / 2 exp [ ω 2 4 ( 1 / τ e 2 + i γ ) ] .
Δ T / T ( ω ) = | [ E ( ω ) + i δ E ex ( ω ) ] / E ( ω ) | 2 1 2 δ Im [ E ex ( ω ) / E ( ω ) ] = 2 δ Im ( ( i γ ) 1 / 2 / ( 1 / τ e 2 + i γ ) 1 / 2 × exp { ω 2 / [ 4 ( 1 / τ e 2 + i γ ) ] + τ p 2 ω 2 / 4 + i ρ ω 2 } ) .
Δ T / T ( ω ) ~ 2 δ Im ( ( i γ ) 1 / 2 / ( 1 / τ e 2 i γ ) 1 / 2 × exp { ω 2 / [ 4 ( 1 / τ e 2 i γ ) ] + i ρ ω 2 } ) .
Δ T / T ~ δ ( 1 / 2 ρ ) 1 / 2 τ e exp ( τ e 2 ω 2 / 4 ) × ( cos ρ ω 2 sin ρ ω 2 ) .

Metrics