Abstract

We describe the polarization properties of a long Nd3+-doped optical fiber laser. An intracavity prism acts as a dichroic element and fixes the polarization of the laser beam essentially in its plane of incidence. The slight birefringence of the fiber makes a wavelength-dependent phase plate that modifies the state of the polarization. In the laser output spectrum, the azimuth for the elliptically polarized field can thus rotate by several times π/2 if the fiber is long enough. This gives a channeled spectrum when observed through a polarizer.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Lin, P. R. Morkel, L. Reekie, D. N. Payne, in Proceedings of European Conference on Optical Communication ’87 (European Optical Society, Helsinki, 1987), Vol. 1, p. 109.
  2. J. T. Lin, W. A. Gambling, D. N. Payne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), p. 90.
  3. M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
    [CrossRef]
  4. P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
    [CrossRef]

1991 (1)

M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
[CrossRef]

1989 (1)

P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Alard, F. R.

P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Allain, J. Y.

M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
[CrossRef]

Durteste, Y.

P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

François, P. L.

M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
[CrossRef]

P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Gambling, W. A.

J. T. Lin, W. A. Gambling, D. N. Payne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), p. 90.

Le Flohic, M.

M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
[CrossRef]

Lin, J. T.

J. T. Lin, P. R. Morkel, L. Reekie, D. N. Payne, in Proceedings of European Conference on Optical Communication ’87 (European Optical Society, Helsinki, 1987), Vol. 1, p. 109.

J. T. Lin, W. A. Gambling, D. N. Payne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), p. 90.

Monerie, M.

P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

Morkel, P. R.

J. T. Lin, P. R. Morkel, L. Reekie, D. N. Payne, in Proceedings of European Conference on Optical Communication ’87 (European Optical Society, Helsinki, 1987), Vol. 1, p. 109.

Payne, D. N.

J. T. Lin, P. R. Morkel, L. Reekie, D. N. Payne, in Proceedings of European Conference on Optical Communication ’87 (European Optical Society, Helsinki, 1987), Vol. 1, p. 109.

J. T. Lin, W. A. Gambling, D. N. Payne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), p. 90.

Reekie, L.

J. T. Lin, P. R. Morkel, L. Reekie, D. N. Payne, in Proceedings of European Conference on Optical Communication ’87 (European Optical Society, Helsinki, 1987), Vol. 1, p. 109.

Sanchez, F.

M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
[CrossRef]

Stéphan, G.

M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
[CrossRef]

Vassallo, C.

P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

IEEE J. Lightwave Technol. (1)

P. L. François, M. Monerie, C. Vassallo, Y. Durteste, F. R. Alard, IEEE J. Lightwave Technol. 7, 500 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Le Flohic, P. L. François, J. Y. Allain, F. Sanchez, G. Stéphan, IEEE J. Quantum Electron. 27, 1910 (1991).
[CrossRef]

Other (2)

J. T. Lin, P. R. Morkel, L. Reekie, D. N. Payne, in Proceedings of European Conference on Optical Communication ’87 (European Optical Society, Helsinki, 1987), Vol. 1, p. 109.

J. T. Lin, W. A. Gambling, D. N. Payne, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1989), p. 90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sketch of the laser, (b) simplified model used in the calculation.

Fig. 2
Fig. 2

Laser spectrum observed on side B (a) without the polarizer and (b) when the signal is filtered through the polarizer. This last spectrum can be termed the channeled spectrum. In (c) the spectrum measured through a monochromator is shown; it corresponds to a transition region between a maximum and a minimum in (b). It proves that the spectra in (a) and (b) actually are discontinuous; the two lasing bands have perpendicular polarizations and each contains several thousand modes.

Fig. 3
Fig. 3

Calculated anisotropic round-trip transmission for the lasing eigenvectors as a function of the phase difference θ (which is proportional to the frequency). The labeling parameter is the angle ϕ between the axes of the anisotropic elements. Δ is taken to be equal to 0.3.

Fig. 4
Fig. 4

(a), (b) Theoretical azimuths at points A and B for the lasing eigenvectors; (c), (d) corresponding ellipticities at points A and B. The labeling parameter is the angle ϕ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M p = [ t x 0 0 t y ] ,
O ˆ = r 1 ( ν ) r 2 T 2 exp ( i 2 Θ ) [ ( 1 + Δ ) ( cos 2 θ i cos 2 ϕ sin 2 θ ) i ( 1 + Δ ) sin 2 ϕ sin 2 θ i ( 1 Δ ) sin 2 ϕ sin 2 θ ( 1 Δ ) ( cos 2 θ + i cos 2 ϕ sin 2 θ ) ] ,
Δ ν = c ( n 1 n 2 ) L .

Metrics