Abstract

We describe a new form of an all-fiber-optic gyroscope that utilizes a fiber laser. The Sagnac interferometer is used as a loop reflector with a modulated reflectivity to produce actively mode-locked optical pulses. The rotation-induced phase shift is obtained from the timing shift of the pulses. Experimental results compare well with the theoretical predictions.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. I, p. 133.
  2. J. L. Davis, S. Ezekiel, Opt. Lett. 6, 505 (1981).
    [CrossRef] [PubMed]
  3. B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 375 (1984).
    [CrossRef] [PubMed]
  4. H. C. Lefevre, in Optical Fiber Sensors II, B. Culshaw, J. Dakin, eds. (Artech, Dedham, Mass., 1989), Chap. 11.
  5. K. Bohm, P. Martin, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
    [CrossRef]
  6. A. D. Kersey, R. P. Moeller, Electron. Lett. 26, 1251 (1990).
    [CrossRef]
  7. B. Y. Kim, H. J. Shaw, Opt. Lett. 9, 378 (1984).
    [CrossRef] [PubMed]
  8. K. Toyama, K. A. Fesler, B. Y. Kim, H. J. Shaw, Opt. Lett. 16, 1207 (1991).
    [CrossRef] [PubMed]
  9. D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1988).
    [CrossRef]

1991 (1)

1990 (1)

A. D. Kersey, R. P. Moeller, Electron. Lett. 26, 1251 (1990).
[CrossRef]

1988 (1)

D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

1984 (2)

1983 (1)

K. Bohm, P. Martin, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

1981 (1)

Aronowitz, F.

F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. I, p. 133.

Bohm, K.

K. Bohm, P. Martin, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Davis, J. L.

Ezekiel, S.

Fesler, K. A.

Kersey, A. D.

A. D. Kersey, R. P. Moeller, Electron. Lett. 26, 1251 (1990).
[CrossRef]

Kim, B. Y.

Lefevre, H. C.

H. C. Lefevre, in Optical Fiber Sensors II, B. Culshaw, J. Dakin, eds. (Artech, Dedham, Mass., 1989), Chap. 11.

Martin, P.

K. Bohm, P. Martin, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Moeller, R. P.

A. D. Kersey, R. P. Moeller, Electron. Lett. 26, 1251 (1990).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Petermann, K.

K. Bohm, P. Martin, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Shaw, H. J.

Toyama, K.

Weidel, E.

K. Bohm, P. Martin, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Electron. Lett. (2)

K. Bohm, P. Martin, E. Weidel, K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

A. D. Kersey, R. P. Moeller, Electron. Lett. 26, 1251 (1990).
[CrossRef]

IEEE J. Lightwave Technol. (1)

D. B. Mortimore, IEEE J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Opt. Lett. (4)

Other (2)

H. C. Lefevre, in Optical Fiber Sensors II, B. Culshaw, J. Dakin, eds. (Artech, Dedham, Mass., 1989), Chap. 11.

F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. I, p. 133.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the MLFLG. Le, fiber length outside the sensing loop; Lc, fiber length of the sensing loop; PM, phase modulator. (b) Response of the gyro output to the phase-difference modulation.

Fig. 2
Fig. 2

Experimental setup of the MLFLG. PC’s, polarization controllers; DC, directional coupler; PM, phase modulator; Pol, polarizer. The black dots indicate splice points.

Fig. 3
Fig. 3

Signal output from the MLFLG: applied electric signal to the phase modulator (upper traces) and the mode-locked optical pulses from the MLFLG (lower traces) with (a) no rotation input, and (b) a rotation rate of 15 deg/s (2 μs/division).

Fig. 4
Fig. 4

Response of the timing shift of the pulses as a function of the rotation rate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t = T 2 π sin 1 ( Δ ϕ R ϕ m ) ,

Metrics