Abstract

The measurement of the electric current with an optical fiber sensor can be made insensitive to external vibrations that act on the leading fiber by using a circuit involving a mirrored Faraday rotator and a highly twisted low-birefringence fiber. A description of the optical configuration as well as our first experimental results are presented. The circuit gives a passive compensation of the disturbances with a measured rejection of the order of 30 dB while maintaining the correct sensitivity to the measurement of the Faraday effect.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Smith, Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  2. A. Papp, H. Harms, Appl. Opt. 22, 3729 (1980).
    [CrossRef]
  3. S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
    [CrossRef]
  4. G. I. Chandler, F. C. Jahoda, Rev. Sci. Instrum. 56, 852 (1985).
    [CrossRef]
  5. T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
    [CrossRef]
  6. R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, IEEE J. Lightwave Technol. 6, 1171 (1988).
    [CrossRef]
  7. Z. B. Ren, P. Robert, Opt. Lett. 14, 1228 (1989).
    [CrossRef] [PubMed]
  8. M. Martinelli, Opt. Commun. 72, 344 (1989).
    [CrossRef]
  9. N. C. Pistoni, M. Martinelli, Opt. Lett. 16, 711 (1991).
    [CrossRef] [PubMed]
  10. R. Ulrich, A. Simon, Appl. Opt. 18, 2242 (1979).

1991 (1)

1989 (2)

1988 (1)

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, IEEE J. Lightwave Technol. 6, 1171 (1988).
[CrossRef]

1985 (2)

G. I. Chandler, F. C. Jahoda, Rev. Sci. Instrum. 56, 852 (1985).
[CrossRef]

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

1980 (1)

A. Papp, H. Harms, Appl. Opt. 22, 3729 (1980).
[CrossRef]

1979 (2)

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

R. Ulrich, A. Simon, Appl. Opt. 18, 2242 (1979).

1978 (1)

Chandler, G. I.

G. I. Chandler, F. C. Jahoda, Rev. Sci. Instrum. 56, 852 (1985).
[CrossRef]

Harms, H.

A. Papp, H. Harms, Appl. Opt. 22, 3729 (1980).
[CrossRef]

Hill, D. C.

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, IEEE J. Lightwave Technol. 6, 1171 (1988).
[CrossRef]

Jackson, D. A.

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, IEEE J. Lightwave Technol. 6, 1171 (1988).
[CrossRef]

Jahoda, F. C.

G. I. Chandler, F. C. Jahoda, Rev. Sci. Instrum. 56, 852 (1985).
[CrossRef]

Jones, J. D. C.

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, IEEE J. Lightwave Technol. 6, 1171 (1988).
[CrossRef]

Martinelli, M.

Okoshi, T.

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

Papp, A.

A. Papp, H. Harms, Appl. Opt. 22, 3729 (1980).
[CrossRef]

Pistoni, N. C.

Rashleigh, S. C.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

Ren, Z. B.

Robert, P.

Simon, A.

R. Ulrich, A. Simon, Appl. Opt. 18, 2242 (1979).

Smith, A. M.

Tatam, R. P.

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, IEEE J. Lightwave Technol. 6, 1171 (1988).
[CrossRef]

Ulrich, R.

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

R. Ulrich, A. Simon, Appl. Opt. 18, 2242 (1979).

Appl. Opt. (3)

A. M. Smith, Appl. Opt. 17, 52 (1978).
[CrossRef] [PubMed]

A. Papp, H. Harms, Appl. Opt. 22, 3729 (1980).
[CrossRef]

R. Ulrich, A. Simon, Appl. Opt. 18, 2242 (1979).

Appl. Phys. Lett. (1)

S. C. Rashleigh, R. Ulrich, Appl. Phys. Lett. 34, 768 (1979).
[CrossRef]

IEEE J. Lightwave Technol. (2)

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, IEEE J. Lightwave Technol. 6, 1171 (1988).
[CrossRef]

Opt. Commun. (1)

M. Martinelli, Opt. Commun. 72, 344 (1989).
[CrossRef]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

G. I. Chandler, F. C. Jahoda, Rev. Sci. Instrum. 56, 852 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Novel OFCS based on the joint use of a MFR and a highly twisted low-birefringence optical fiber. The scheme allows significant rejection of the noise induced by external vibration that acts on the leading fiber. LD, laser diode; BS, beam splitter; L’s, lenses; WP, Wollaston prism; PD’s, photodiodes; M, mirror.

Fig. 2
Fig. 2

(a) Poincaré sphere representation of the SOP evolution in the novel OFCS. The SOP trajectories are confined to the hatched zone. The zone is a narrow belt around the equator, and the width of the belt depends on the relation between the linear and the circular fiber birefringence. (b) The polar view.

Fig. 3
Fig. 3

(a) Power spectrum of the signal induced by a current of 50 A rms, detected by the novel OFCS. (b) The same as in (a) in the presence of the vibration noise. The effect of the vibration is reduced by 30 dB, leading to a residual noise that does not affect the current signal.

Fig. 4
Fig. 4

Power spectra from conventional OFCS used in the same experimental conditions as in Fig. 3: the vibration noise (b) completely overcomes the detected current signal (a).

Metrics