Abstract

A Y-branch channel waveguide laser whose branch segments were mismatched in length by 2.4% was fabricated by electric-field-assisted ion exchange in Nd-doped, mixed alkali–silicate glass. The laser output wavelength was centered at 1057.3 nm, and the linewidth was 0.4 nm FWHM. Our similarly fabricated single-channel Fabry–Perot lasers and balanced Y-branch lasers display linewidths of 3–4 nm. Pumping was performed with a cw Ti:sapphire laser operating at 785 nm. The imbalanced Y-branch laser reached threshold with an absorbed pump power of 48 mW when a 2% transmitting output coupler was used. The slope efficiency was 2%. An extended cavity was used to imbalance the arms in a second laser by a ratio of 2.8:1. This device displayed a linewidth of approximately 3.7 GHz FWHM. The linewidth narrowing of these coupled-cavity lasers is analogous to that seen in a Michelson laser.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
    [CrossRef]
  2. H. Aoki, O. Maruyama, Y. Asahara, Electron. Lett. 26, 1910 (1990).
    [CrossRef]
  3. E. Lallier, J. P. Pocholle, M. Papuchon, M. de Micheli, M. J. Li, Q. He, D. B. Ostrowsky, C. Grezes-Besset, E. Pelletier, Opt. Lett. 15, 682 (1990).
    [CrossRef] [PubMed]
  4. R. Brinkmann, W. Sohler, H. Suche, Electron. Lett. 27, 415 (1991).
    [CrossRef]
  5. N. A. Sanford, K. J. Malone, D. R. Larson, R. K. Hickernell, Opt. Lett. 16, 1168 (1991).
    [CrossRef] [PubMed]
  6. M. DiDomenico, IEEE J. Quantum Electron. QE-2, 311 (1966).
    [CrossRef]
  7. R. K. Hickernell, D. R. Larson, R. J. Phelan, L. E. Larson, Appl. Opt. 27, 2636 (1988).
    [CrossRef] [PubMed]

1991 (2)

1990 (2)

1989 (1)

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
[CrossRef]

1988 (1)

1966 (1)

M. DiDomenico, IEEE J. Quantum Electron. QE-2, 311 (1966).
[CrossRef]

Aoki, H.

H. Aoki, O. Maruyama, Y. Asahara, Electron. Lett. 26, 1910 (1990).
[CrossRef]

Asahara, Y.

H. Aoki, O. Maruyama, Y. Asahara, Electron. Lett. 26, 1910 (1990).
[CrossRef]

Brinkmann, R.

R. Brinkmann, W. Sohler, H. Suche, Electron. Lett. 27, 415 (1991).
[CrossRef]

de Micheli, M.

DiDomenico, M.

M. DiDomenico, IEEE J. Quantum Electron. QE-2, 311 (1966).
[CrossRef]

Grezes-Besset, C.

Hanawa, F.

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
[CrossRef]

He, Q.

Hibino, Y.

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
[CrossRef]

Hickernell, R. K.

Kitagawa, T.

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
[CrossRef]

Lallier, E.

Larson, D. R.

Larson, L. E.

Li, M. J.

Malone, K. J.

Maruyama, O.

H. Aoki, O. Maruyama, Y. Asahara, Electron. Lett. 26, 1910 (1990).
[CrossRef]

Ostrowsky, D. B.

Papuchon, M.

Pelletier, E.

Phelan, R. J.

Pocholle, J. P.

Sanford, N. A.

Shimizu, M.

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
[CrossRef]

Sohler, W.

R. Brinkmann, W. Sohler, H. Suche, Electron. Lett. 27, 415 (1991).
[CrossRef]

Suche, H.

R. Brinkmann, W. Sohler, H. Suche, Electron. Lett. 27, 415 (1991).
[CrossRef]

Sugita, A.

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

H. Aoki, O. Maruyama, Y. Asahara, Electron. Lett. 26, 1910 (1990).
[CrossRef]

R. Brinkmann, W. Sohler, H. Suche, Electron. Lett. 27, 415 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. DiDomenico, IEEE J. Quantum Electron. QE-2, 311 (1966).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Hibino, T. Kitagawa, M. Shimizu, F. Hanawa, A. Sugita, IEEE Photon. Technol. Lett. 1, 349 (1989).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the monolithic imbalanced Y-branch laser.

Fig. 2
Fig. 2

Output power of port 2 as a function of absorbed pump power of the monolithic unbalanced Y-branch laser. The pump wavelength was 785 nm. Inset: Laser output spectrum.

Fig. 3
Fig. 3

Schematic of the extended-cavity imbalanced Y-branch laser.

Fig. 4
Fig. 4

Longitudinal mode spectrum for the extended-cavity imbalanced Y-branch laser.

Fig. 5
Fig. 5

(a) Ratio of the guided-to-incident field amplitudes for a passive lossless resonator of the configuration illustrated in Fig. 1. Mirror reflectances are given in the text. The 160.22-GHz-wide span shown is one complete cycle, (b) Ratio of the guided-to-incident field amplitudes for an extended-cavity passive lossless resonator of configuration illustrated in Fig. 3. The 16.51-GHz-wide span shown is the separation between the major peaks, (c) Same as in (b) except that the losses of the intracavity microscope objective and facet reflection have been included. This plot is a 9.55-GHz-wide expansion around the central peak in (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E 1 = E i t 1 + E i t 1 r 1 [ r 2 exp ( i 2 β l 2 ) + r 3 exp ( i 2 β l 3 ) 2 ] + E i t 1 r 1 2 [ r 2 exp ( i 2 β l 2 ) + r 3 exp ( i 2 β l 3 ) 2 ] 2 + . . . .
| E 1 | = | E i | t 1 / ( 1 r 1 [ r 2 cos ( 2 β l 2 ) + r 3 cos ( 2 β l 3 ) ] + r 1 2 4 { r 2 2 + r 3 2 + 2 r 2 r 3 cos [ 2 β ( l 2 l 3 ) ] } ) 1 / 2 .

Metrics