Abstract

Segmented KTP waveguides designed for quasi-phase-matched frequency doubling have a periodic variation in the refractive index that acts as a distributed Bragg reflector (DBR). We have measured reflectivity spectra for both TM and TE modes in various segmented KTP waveguides. A reflectivity as high as 70% was observed in a periodically poled KTP waveguide. Reflection bandwidths were typically 0.03–0.06 nm, depending on the length of the sample. The measured temperature tuning rate of the DBR wavelength was 0.017 nm/°C.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Mizuuchi, K. Yamamoto, T. Tanuichi, Appl. Phys. Lett. 58, 2732 (1991).
    [CrossRef]
  2. C. J. van der Poel, J. D. Bierlein, J. B. Brown, S. Colak, Appl. Phys. Lett. 57, 2074 (1990).
    [CrossRef]
  3. K. Shinozaki, T. Fukanaga, K. Watanabe, T. Kamijoh, Appl. Phys. Lett. 59, 510 (1991).
    [CrossRef]
  4. M. G. Roeloefs, F. Laurell, J. D. Bierlein, in Compact Blue-Green Lasers Technical Digest (Optical Society of America, Washington, D.C., 1992), p. 127.
  5. K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
    [CrossRef]
  6. L. Li, J. J. Burke, Opt. Lett. 17, 1195 (1992).
    [CrossRef] [PubMed]
  7. J. D. Bierlein, H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]
  8. W. P. Risk, Appl. Phys. Lett. 58, 19 (1991).
    [CrossRef]

1992 (1)

1991 (4)

W. P. Risk, Appl. Phys. Lett. 58, 19 (1991).
[CrossRef]

K. Mizuuchi, K. Yamamoto, T. Tanuichi, Appl. Phys. Lett. 58, 2732 (1991).
[CrossRef]

K. Shinozaki, T. Fukanaga, K. Watanabe, T. Kamijoh, Appl. Phys. Lett. 59, 510 (1991).
[CrossRef]

K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
[CrossRef]

1990 (1)

C. J. van der Poel, J. D. Bierlein, J. B. Brown, S. Colak, Appl. Phys. Lett. 57, 2074 (1990).
[CrossRef]

1989 (1)

Bierlein, J. D.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, S. Colak, Appl. Phys. Lett. 57, 2074 (1990).
[CrossRef]

J. D. Bierlein, H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
[CrossRef]

M. G. Roeloefs, F. Laurell, J. D. Bierlein, in Compact Blue-Green Lasers Technical Digest (Optical Society of America, Washington, D.C., 1992), p. 127.

Brown, J. B.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, S. Colak, Appl. Phys. Lett. 57, 2074 (1990).
[CrossRef]

Burke, J. J.

Colak, S.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, S. Colak, Appl. Phys. Lett. 57, 2074 (1990).
[CrossRef]

Fukanaga, T.

K. Shinozaki, T. Fukanaga, K. Watanabe, T. Kamijoh, Appl. Phys. Lett. 59, 510 (1991).
[CrossRef]

Kamijoh, T.

K. Shinozaki, T. Fukanaga, K. Watanabe, T. Kamijoh, Appl. Phys. Lett. 59, 510 (1991).
[CrossRef]

K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
[CrossRef]

Laurell, F.

M. G. Roeloefs, F. Laurell, J. D. Bierlein, in Compact Blue-Green Lasers Technical Digest (Optical Society of America, Washington, D.C., 1992), p. 127.

Li, L.

Miyamoto, Y.

K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, T. Tanuichi, Appl. Phys. Lett. 58, 2732 (1991).
[CrossRef]

Nonaka, T.

K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
[CrossRef]

Okayama, H.

K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
[CrossRef]

Risk, W. P.

W. P. Risk, Appl. Phys. Lett. 58, 19 (1991).
[CrossRef]

Roeloefs, M. G.

M. G. Roeloefs, F. Laurell, J. D. Bierlein, in Compact Blue-Green Lasers Technical Digest (Optical Society of America, Washington, D.C., 1992), p. 127.

Shinozaki, K.

K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
[CrossRef]

K. Shinozaki, T. Fukanaga, K. Watanabe, T. Kamijoh, Appl. Phys. Lett. 59, 510 (1991).
[CrossRef]

Tanuichi, T.

K. Mizuuchi, K. Yamamoto, T. Tanuichi, Appl. Phys. Lett. 58, 2732 (1991).
[CrossRef]

van der Poel, C. J.

C. J. van der Poel, J. D. Bierlein, J. B. Brown, S. Colak, Appl. Phys. Lett. 57, 2074 (1990).
[CrossRef]

Vanherzeele, H.

Watanabe, K.

K. Shinozaki, T. Fukanaga, K. Watanabe, T. Kamijoh, Appl. Phys. Lett. 59, 510 (1991).
[CrossRef]

Yamamoto, K.

K. Mizuuchi, K. Yamamoto, T. Tanuichi, Appl. Phys. Lett. 58, 2732 (1991).
[CrossRef]

Appl. Phys. Lett. (5)

K. Mizuuchi, K. Yamamoto, T. Tanuichi, Appl. Phys. Lett. 58, 2732 (1991).
[CrossRef]

C. J. van der Poel, J. D. Bierlein, J. B. Brown, S. Colak, Appl. Phys. Lett. 57, 2074 (1990).
[CrossRef]

K. Shinozaki, T. Fukanaga, K. Watanabe, T. Kamijoh, Appl. Phys. Lett. 59, 510 (1991).
[CrossRef]

K. Shinozaki, Y. Miyamoto, H. Okayama, T. Kamijoh, T. Nonaka, Appl. Phys. Lett. 58, 1934 (1991).
[CrossRef]

W. P. Risk, Appl. Phys. Lett. 58, 19 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (1)

M. G. Roeloefs, F. Laurell, J. D. Bierlein, in Compact Blue-Green Lasers Technical Digest (Optical Society of America, Washington, D.C., 1992), p. 127.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of segmented KTP waveguides. Top view, looking down on the −z face.

Fig. 2
Fig. 2

Experimental arrangement for investigating DBR properties of KTP waveguides.

Fig. 3
Fig. 3

Variation of reflected power (solid trace) and transmitted power (dashed trace) as a function of wavelength for the 4-μm-wide, 4-μm-period waveguide on the HG KTP sample (m = 17 TM DBR order).

Fig. 4
Fig. 4

Reflectivity spectrum of the TE and TM modes for the w = 4.5 μm, ld = 3 μm, lu = 2.5 μm waveguide on the FG sample.

Fig. 5
Fig. 5

Calculated variation of DBR wavelength with segmentation period Λ. DBR wavelengths for both TM modes (solid lines) and TE modes (dotted lines) are shown. Data points are the measured DBR wavelengths for segmented waveguides on both the FG and HG samples for TM modes (filled circles) and TE modes (open triangles). The dotted–dashed line shows the variation of the QPM wavelength with period. The filled squares indicate experimentally measured QPM wavelengths.

Fig. 6
Fig. 6

Variation of DBR and QPM wavelengths with temperature, measured with the 4-μm-wide, 4-μm-period waveguide on the HG sample. Note that, in this case, the QPM and DBR wavelengths are ~17 nm apart because the period is 4 μm, rather than the 4.2 μm required for coincidence between the QPM wavelength and the m = 18 DBR order (see Fig. 5).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ m 2 n eff = Λ ,
n eff = n u l u + n d l d Λ ,

Metrics