Abstract

A simple structure for a high-isolation polarization-independent optical circulator is proposed. A four-port circulator has been assembled for 1.3-μm single-mode fiber systems. Its insertion loss and isolation have been measured to be ≦2.0 and ≧44.0 dB, respectively, at a wavelength of 1.298 μm. The isolation, which is free from reflections, is measured to be ≧64.2 dB.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujii, IEEE J. Lightwave Technol. 9, 1238 (1991).
    [Crossref]
  2. Y. Fujii, IEEE Photon. Technol. Lett. 4, 154 (1992).
    [Crossref]
  3. Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
    [Crossref]
  4. K. Shiraishi, S. Kawakami, Opt. Lett. 12, 462 (1987).
    [Crossref] [PubMed]
  5. R. B. Sosman, “Electrical and optical properties of silica,” in International Critical Tables, Vol. VI (McGraw-Hill, New York, 1928).

1992 (2)

Y. Fujii, IEEE Photon. Technol. Lett. 4, 154 (1992).
[Crossref]

Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
[Crossref]

1991 (1)

Y. Fujii, IEEE J. Lightwave Technol. 9, 1238 (1991).
[Crossref]

1987 (1)

Fujii, Y.

Y. Fujii, IEEE Photon. Technol. Lett. 4, 154 (1992).
[Crossref]

Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
[Crossref]

Y. Fujii, IEEE J. Lightwave Technol. 9, 1238 (1991).
[Crossref]

Kawakami, S.

Shiraishi, K.

Sosman, R. B.

R. B. Sosman, “Electrical and optical properties of silica,” in International Critical Tables, Vol. VI (McGraw-Hill, New York, 1928).

IEEE J. Lightwave Technol. (2)

Y. Fujii, IEEE J. Lightwave Technol. 9, 1238 (1991).
[Crossref]

Y. Fujii, IEEE J. Lightwave Technol. 10, 1226 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Fujii, IEEE Photon. Technol. Lett. 4, 154 (1992).
[Crossref]

Opt. Lett. (1)

Other (1)

R. B. Sosman, “Electrical and optical properties of silica,” in International Critical Tables, Vol. VI (McGraw-Hill, New York, 1928).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed structure of the high-isolation polarization-independent circulator. PBS’s, polarizing beam splitters.

Fig. 2
Fig. 2

Positions and polarization states of beams from Fiber 1 on the boundary planes (a) AA′, (b) BB′, (c) CC′, (d) DD′, (e) EE′, and (f) FF′ in Fig. 1.

Fig. 3
Fig. 3

Positions and polarization states of beams from Fiber 2 on the boundary planes (a) FF′, (b) EE′, (c) DD′, (d) CC′, (e) BB′, and (f) AA′ in Fig. 1.

Fig. 4
Fig. 4

Positions and polarization states of beams from Fiber 3 on the boundary planes (a) AA′, (b) BB′, (c) CC′, (d) DD′, (e) EE′, and (f) FF′ in Fig. 1.

Fig. 5
Fig. 5

Positions and polarization states of beams from Fiber 4 on the boundary planes (a) FF′, (b) EE′, (c) DD′, (d) CC′, (e) BB′, and (f) AA′ in Fig. 1.

Fig. 6
Fig. 6

Calculated isolations of (a) Fiber 1 or Fiber 3 and (b) Fiber 2 or Fiber 4 for various lengths of BRB. L is the length of the BRB.

Tables (1)

Tables Icon

Table 1 Measured Insertion Loss, Isolation, and Return Loss of the Fabricated Circulator

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( X 1 + sin 2 α ) 2 sin 2 β + 2 η 1 ( X 1 + sin 2 α ) + η 2 sin 2 β .

Metrics