Abstract

Test bar charts hidden in a 5.5-cm-thick 2.5% Intralipid solution were imaged as a function of phantom depth and size with steady-state Fourier and picosecond Kerr–Fourier imaging systems. With time and space gating, a series of 250-μm bars placed in a thick highly scattering medium were resolved at a signal level of ~10−10 of the illumination intensity.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
    [Crossref] [PubMed]
  2. M. A. Duguay, A. T. Mattick, Appl. Opt. 10, 2162 (1971).
    [Crossref] [PubMed]
  3. K. G. Spears, J. Serafin, N. H. Abramson, IEEE Trans. Biomed. Eng. 36, 1210 (1990).
    [Crossref]
  4. H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, Opt. Lett. 16, 487 (1991).
    [Crossref] [PubMed]
  5. A. Rebane, J. Feinberg, Nature 351, 378 (1991).
    [Crossref]
  6. K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).
    [Crossref] [PubMed]
  7. K. M. Yoo, B. B. Das, R. R. Alfano, Opt. Lett. 17, 958 (1992).
    [Crossref] [PubMed]
  8. E. M. Sevick, B. Chance, Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 84 (1991).
  9. M. Duncan, R. Mahon, L. Tankerskey, J. Reintjes, Opt. Lett. 16, 1868 (1991).
    [Crossref] [PubMed]
  10. J. Fujimoto, S. De Silversti, E. Ippen, R. Margolis, A. Oseroff, Opt. Lett. 11, 150 (1986).
    [Crossref] [PubMed]
  11. S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, Opt. Lett. 15, 1178 (1990).
    [Crossref]
  12. K. M. Yoo, F. Liu, R. R. Alfano, Opt. Lett. 16, 1068 (1991).
    [Crossref] [PubMed]
  13. P. Ho, L. Wang, R. R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1599, 325 (1992).
  14. L. Wang, P. Ho, H. Dai, R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” submitted to Appl. Opt.
  15. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  16. C. Moes, M. Gemert, W. Star, J. Marijnissen, S. Prahl, Appl. Opt. 28, 2292 (1989).
    [Crossref] [PubMed]

1992 (2)

P. Ho, L. Wang, R. R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1599, 325 (1992).

K. M. Yoo, B. B. Das, R. R. Alfano, Opt. Lett. 17, 958 (1992).
[Crossref] [PubMed]

1991 (6)

1990 (3)

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, Opt. Lett. 15, 1178 (1990).
[Crossref]

K. G. Spears, J. Serafin, N. H. Abramson, IEEE Trans. Biomed. Eng. 36, 1210 (1990).
[Crossref]

K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).
[Crossref] [PubMed]

1989 (1)

1986 (1)

1971 (1)

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, IEEE Trans. Biomed. Eng. 36, 1210 (1990).
[Crossref]

Alfano, R. R.

P. Ho, L. Wang, R. R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1599, 325 (1992).

K. M. Yoo, B. B. Das, R. R. Alfano, Opt. Lett. 17, 958 (1992).
[Crossref] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, Opt. Lett. 16, 1068 (1991).
[Crossref] [PubMed]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[Crossref] [PubMed]

K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).
[Crossref] [PubMed]

L. Wang, P. Ho, H. Dai, R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” submitted to Appl. Opt.

Anderson-Engels, S.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, Opt. Lett. 15, 1178 (1990).
[Crossref]

Berg, R.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, Opt. Lett. 15, 1178 (1990).
[Crossref]

Chance, B.

E. M. Sevick, B. Chance, Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 84 (1991).

Chen, H.

Chen, Y.

Dai, H.

L. Wang, P. Ho, H. Dai, R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” submitted to Appl. Opt.

Das, B. B.

De Silversti, S.

Dillworth, D.

Duguay, M. A.

Duncan, M.

Feinberg, J.

A. Rebane, J. Feinberg, Nature 351, 378 (1991).
[Crossref]

Fujimoto, J.

Gemert, M.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Ho, P.

P. Ho, L. Wang, R. R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1599, 325 (1992).

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[Crossref] [PubMed]

L. Wang, P. Ho, H. Dai, R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” submitted to Appl. Opt.

Ippen, E.

Jarlman, O.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, Opt. Lett. 15, 1178 (1990).
[Crossref]

Leith, E.

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[Crossref] [PubMed]

Liu, F.

Lopez, J.

Mahon, R.

Margolis, R.

Marijnissen, J.

Mattick, A. T.

Moes, C.

Oseroff, A.

Prahl, S.

Rebane, A.

A. Rebane, J. Feinberg, Nature 351, 378 (1991).
[Crossref]

Reintjes, J.

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, IEEE Trans. Biomed. Eng. 36, 1210 (1990).
[Crossref]

Sevick, E. M.

E. M. Sevick, B. Chance, Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 84 (1991).

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, IEEE Trans. Biomed. Eng. 36, 1210 (1990).
[Crossref]

Star, W.

Svanberg, S.

S. Anderson-Engels, R. Berg, S. Svanberg, O. Jarlman, Opt. Lett. 15, 1178 (1990).
[Crossref]

Tankerskey, L.

Valdmanis, J.

Wang, L.

P. Ho, L. Wang, R. R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1599, 325 (1992).

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[Crossref] [PubMed]

L. Wang, P. Ho, H. Dai, R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” submitted to Appl. Opt.

Yoo, K. M.

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[Crossref] [PubMed]

Appl. Opt. (2)

IEEE Trans. Biomed. Eng. (1)

K. G. Spears, J. Serafin, N. H. Abramson, IEEE Trans. Biomed. Eng. 36, 1210 (1990).
[Crossref]

Nature (1)

A. Rebane, J. Feinberg, Nature 351, 378 (1991).
[Crossref]

Opt. Lett. (7)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

P. Ho, L. Wang, R. R. Alfano, Proc. Soc. Photo-Opt. Instrum. Eng. 1599, 325 (1992).

E. M. Sevick, B. Chance, Proc. Soc. Photo-Opt. Instrum. Eng. 1431, 84 (1991).

Science (1)

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[Crossref] [PubMed]

Other (2)

L. Wang, P. Ho, H. Dai, R. R. Alfano, “Time-resolved Fourier spectrum and imaging in highly scattering media,” submitted to Appl. Opt.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Time-resolved Kerr–Fourier imaging system. ML, mode-locked picosecond 1054-nm laser pulse train; BS, beam splitter; DL, varied time delay with a movable prism; L1, Fourier transform lens; L2, imaging lens; P, A, a pair of crossed calcite polarizers; K, Kerr cell; F, focal length of L1; FTSP, Fourier-transform spectrum plane; CCD, cooled CCD camera; PC, personal computer.

Fig. 2
Fig. 2

Time resolved KF imaging at T = 0 ps and 15 ps of 1-mm test bars in a 55-mm-thick (D) 2.5% Intralipid solution (printed from an Apple LaserWriter II). The upper diagram indicates the geometrie arrangement of the test bar phantoms immersed inside the turbid medium, a, Horizontal bars; b, vertical bars. The contrast obtained from 0 ps is 88 ± 5% and from 15 ps is 60 ± 5%.

Fig. 3
Fig. 3

Contrast and S/N of KF images of three black bar charts as a function of time and bar width and depth in a 5.5-cm-thick Intralipid solution. □, 1 mm; Δ, 500 μm; ○, 250 μm. (a) KF contrast at T = 0 ps and cw Fourier contrast. (b) KF contrast at T = 15 ps. (c) KF S/N at T = 0 ps and cw Fourier S/N. (d) KF S/N at T = 15 ps. Open symbols are KF data, and filled symbols are cw (no time gate) data. Solid and dashed Unes, eye-guided curves for KF and cw Fourier data, respectively. At gating time 15 ps, the contrast of each measurement is ~80% of the contrast value at 0 ps. The vertical axis is the image contrast of the opaque bars, where the contrast of 100% is defined to be the measured contrast of the bar immersed in clear water. The horizontal-depth axis is the location of the bar chart from the entrance window; e.g., bar phantoms at the entrance window of the 55-cm cell are defined to be at depth 0. Each data point is an average of ~5 measurements with approximately ±6% error.

Metrics