Abstract

We obtain single-lobed, near-diffraction-limited output from a 20-element laser-diode array coupled to an apertured photorefractive phase conjugator. At low driving currents the output beam is diffraction limited and contains 75% of the total output power emanating from the array. At high driving current a 1.5× diffraction-limited lobe contains 490 mW of power, or 54% of the output power. By studying the near-field emission pattern and the frequency spectrum of the laser, we confirm that the apertured conjugator selects a narrow range of output array transverse modes.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Hadley, J. P. Hohimer, A. Owyoung, IEEE J. Quantum Electron. QE-23, 765 (1987).
    [Crossref]
  2. J. M. Verdiell, R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
    [Crossref]
  3. F. X. D’Amato, E. T. Siebert, C. Roychoudhuri, Appl. Phys. Lett. 55, 816 (1989).
    [Crossref]
  4. J. R. Leger, M. L. Scott, W. B. Veldkamp, Appl. Phys. Lett. 52, 1771 (1988).
    [Crossref]
  5. C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
    [Crossref]
  6. L. Goldberg, J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
    [Crossref]
  7. L. Goldberg, J. F. Weller, Electron. Lett. 25, 112 (1989).
    [Crossref]
  8. S. MacCormack, R. W. Eason, Opt. Lett. 16, 705 (1991).
    [Crossref] [PubMed]
  9. J. Feinberg, Opt. Lett. 7, 486 (1982).
    [Crossref] [PubMed]
  10. L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scrifes, Appl. Phys. Lett. 46, 236 (1985).
    [Crossref]
  11. C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
    [Crossref]

1991 (1)

1990 (1)

J. M. Verdiell, R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[Crossref]

1989 (3)

F. X. D’Amato, E. T. Siebert, C. Roychoudhuri, Appl. Phys. Lett. 55, 816 (1989).
[Crossref]

L. Goldberg, J. F. Weller, Electron. Lett. 25, 112 (1989).
[Crossref]

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

1988 (1)

J. R. Leger, M. L. Scott, W. B. Veldkamp, Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

1987 (3)

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

L. Goldberg, J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

G. R. Hadley, J. P. Hohimer, A. Owyoung, IEEE J. Quantum Electron. QE-23, 765 (1987).
[Crossref]

1985 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scrifes, Appl. Phys. Lett. 46, 236 (1985).
[Crossref]

1982 (1)

Breger, J.

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

D’Amato, F. X.

F. X. D’Amato, E. T. Siebert, C. Roychoudhuri, Appl. Phys. Lett. 55, 816 (1989).
[Crossref]

Dienes, A.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

Diennes, A.

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

Eason, R. W.

Feinberg, J.

Frey, R.

J. M. Verdiell, R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[Crossref]

Goldberg, L.

L. Goldberg, J. F. Weller, Electron. Lett. 25, 112 (1989).
[Crossref]

L. Goldberg, J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scrifes, Appl. Phys. Lett. 46, 236 (1985).
[Crossref]

Hadley, G. R.

G. R. Hadley, J. P. Hohimer, A. Owyoung, IEEE J. Quantum Electron. QE-23, 765 (1987).
[Crossref]

Hohimer, J. P.

G. R. Hadley, J. P. Hohimer, A. Owyoung, IEEE J. Quantum Electron. QE-23, 765 (1987).
[Crossref]

Leger, J. R.

J. R. Leger, M. L. Scott, W. B. Veldkamp, Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

MacCormack, S.

Owyoung, A.

G. R. Hadley, J. P. Hohimer, A. Owyoung, IEEE J. Quantum Electron. QE-23, 765 (1987).
[Crossref]

Roychoudhuri, C.

F. X. D’Amato, E. T. Siebert, C. Roychoudhuri, Appl. Phys. Lett. 55, 816 (1989).
[Crossref]

Scott, M. L.

J. R. Leger, M. L. Scott, W. B. Veldkamp, Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

Scrifes, D. R.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scrifes, Appl. Phys. Lett. 46, 236 (1985).
[Crossref]

Siebert, E. T.

F. X. D’Amato, E. T. Siebert, C. Roychoudhuri, Appl. Phys. Lett. 55, 816 (1989).
[Crossref]

Streifer, W.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scrifes, Appl. Phys. Lett. 46, 236 (1985).
[Crossref]

Veldkamp, W. B.

J. R. Leger, M. L. Scott, W. B. Veldkamp, Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

Verdiell, J. M.

J. M. Verdiell, R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[Crossref]

Weller, J. F.

L. Goldberg, J. F. Weller, Electron. Lett. 25, 112 (1989).
[Crossref]

L. Goldberg, J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scrifes, Appl. Phys. Lett. 46, 236 (1985).
[Crossref]

Whinnery, J. R.

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

Appl. Phys. Lett. (6)

F. X. D’Amato, E. T. Siebert, C. Roychoudhuri, Appl. Phys. Lett. 55, 816 (1989).
[Crossref]

J. R. Leger, M. L. Scott, W. B. Veldkamp, Appl. Phys. Lett. 52, 1771 (1988).
[Crossref]

C. J. Chang-Hasnain, J. Breger, D. R. Scrifes, W. Streifer, J. R. Whinnery, A. Diennes, Appl. Phys. Lett. 50, 1465 (1987).
[Crossref]

L. Goldberg, J. F. Weller, Appl. Phys. Lett. 51, 871 (1987).
[Crossref]

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scrifes, Appl. Phys. Lett. 46, 236 (1985).
[Crossref]

C. J. Chang-Hasnain, A. Dienes, J. R. Whinnery, W. Streifer, D. R. Scrifes, Appl. Phys. Lett. 54, 484 (1989).
[Crossref]

Electron. Lett. (1)

L. Goldberg, J. F. Weller, Electron. Lett. 25, 112 (1989).
[Crossref]

IEEE J. Quantum Electron. (2)

G. R. Hadley, J. P. Hohimer, A. Owyoung, IEEE J. Quantum Electron. QE-23, 765 (1987).
[Crossref]

J. M. Verdiell, R. Frey, IEEE J. Quantum Electron. 26, 270 (1990).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser-diode array coupled to a self-pumped phase conjugator. The half-wave plate rotates the plane of polarization, and the two 45° mirrors align the coherence plane and the plane of polarization parallel to the BaTiO3 crystal’s c axis. The right-angled prism and the vertical razor edge R form an adjustable aperture in the far field. The angle of incidence of the signal beam on the crystal is θ = 60°.

Fig. 2
Fig. 2

Array far-field pattern under free-running conditions [curve (a)], with phase-conjugate external cavity feedback at a low drive current (1.7Ith) [curve (b)], and with phase-conjugate feedback at the maximum drive current (3.1Ith) [curve (c)]. The main lobe in curve (b) has a FWHM of 0.317°, which corresponds to 1.09 times the diffraction limit (a Strehl ratio of 0.44). Curve (c) corresponds to an output power of 910 mW, and the main lobe has a FWHM of 0.43°, 1.48 times the diffraction limit (a Strehl ratio of 0.30).

Fig. 3
Fig. 3

Frequency spectrum of the array output showing the longitudinal modes under free-running conditions [curve (a)] and with phase-conjugate external cavity feedback [curve (b)]. The conjugator shifts and narrows the frequency spectrum. Note the absence of fine splitting in curve (b), indicating that the laser is operating on one array mode (or perhaps a few adjacent modes).

Fig. 4
Fig. 4

Array near-field profile under free-running conditions [curve (a)] and with external cavity feedback [curve (b)]. The drive current was 1 A. Note the increased intensity modulation present with phase-conjugate feedback, indicating that the laser is running on only a few array modes.

Metrics