Abstract

A new concept of laser resonator, which uses two binary transmittance filters in two conjugated Fourier planes, can synthesize various optical waves. We have implemented this method on a Nd:YAG oscillator and produced high-energy (>200-mJ) short-duration pulses with uniform amplitude and spatial phase distribution on a circular cross section.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Appl. Opt. 13, 353 (1974).
    [CrossRef] [PubMed]
  2. N. Hodgson, H. Weber, IEEE J. Quantum Electron. 26, 731 (1990).
    [CrossRef]
  3. E. Mottay, E. Audouard, E. Durand, C. N. Man, Opt. Lett. 17, 905 (1992).
    [CrossRef] [PubMed]
  4. V. Kermene, A. Saviot, M. Vampouille, B. Colombeau, C. Froehly, Opt. Lett. 17, 859 (1992).
    [CrossRef] [PubMed]
  5. R. W. Gerchberg, W. O. Saxton, Optik 35, 237 (1972).
  6. D. Peri, Appl. Opt. 26, 1782 (1987).
    [CrossRef] [PubMed]
  7. A. H. Paxton, T. C. Salvi, Opt. Commun. 26, 305 (1978).
    [CrossRef]
  8. P. G. Gobbi, G. C. Reali, Opt. Commun. 52, 195 (1984).
    [CrossRef]
  9. N. Hodgson, B. Ozygus, F. Shabert, H. Weber, Appl. Opt. 32, 3190 (1993).
    [CrossRef] [PubMed]
  10. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 18, p. 727.

1993 (1)

1992 (2)

1990 (1)

N. Hodgson, H. Weber, IEEE J. Quantum Electron. 26, 731 (1990).
[CrossRef]

1987 (1)

1984 (1)

P. G. Gobbi, G. C. Reali, Opt. Commun. 52, 195 (1984).
[CrossRef]

1978 (1)

A. H. Paxton, T. C. Salvi, Opt. Commun. 26, 305 (1978).
[CrossRef]

1974 (1)

1972 (1)

R. W. Gerchberg, W. O. Saxton, Optik 35, 237 (1972).

Audouard, E.

Colombeau, B.

Durand, E.

Froehly, C.

Gerchberg, R. W.

R. W. Gerchberg, W. O. Saxton, Optik 35, 237 (1972).

Gobbi, P. G.

P. G. Gobbi, G. C. Reali, Opt. Commun. 52, 195 (1984).
[CrossRef]

Hodgson, N.

Kermene, V.

Man, C. N.

Mottay, E.

Ozygus, B.

Paxton, A. H.

A. H. Paxton, T. C. Salvi, Opt. Commun. 26, 305 (1978).
[CrossRef]

Peri, D.

Reali, G. C.

P. G. Gobbi, G. C. Reali, Opt. Commun. 52, 195 (1984).
[CrossRef]

Salvi, T. C.

A. H. Paxton, T. C. Salvi, Opt. Commun. 26, 305 (1978).
[CrossRef]

Saviot, A.

Saxton, W. O.

R. W. Gerchberg, W. O. Saxton, Optik 35, 237 (1972).

Shabert, F.

Siegman, A. E.

A. E. Siegman, Appl. Opt. 13, 353 (1974).
[CrossRef] [PubMed]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 18, p. 727.

Vampouille, M.

Weber, H.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

N. Hodgson, H. Weber, IEEE J. Quantum Electron. 26, 731 (1990).
[CrossRef]

Opt. Commun. (2)

A. H. Paxton, T. C. Salvi, Opt. Commun. 26, 305 (1978).
[CrossRef]

P. G. Gobbi, G. C. Reali, Opt. Commun. 52, 195 (1984).
[CrossRef]

Opt. Lett. (2)

Optik (1)

R. W. Gerchberg, W. O. Saxton, Optik 35, 237 (1972).

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chap. 18, p. 727.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical layout of the FTR.

Fig. 2
Fig. 2

Experimental FTR.

Fig. 3
Fig. 3

Near-field intensity profile of the experimental FTR beam.

Fig. 4
Fig. 4

Far-field intensity profile of the experimental FTR beam.

Fig. 5
Fig. 5

FTR beam spatial intensity profile after a propagation of 1.2 m.

Fig. 6
Fig. 6

FTR beam spatial intensity profile after a propagation of 3 m.

Fig. 7
Fig. 7

Far-field intensity profile of the beam without a filtering grid.

Metrics