Abstract

The extended Huygens–Fresnel formulation is used to calculate the average image spectra of a point scatterer, an infinite plane mirror, and a perfectly diffuse object that are illuminated and viewed through the same turbulent medium. It is shown that this double-passage effect can lead to diffraction-limited information about the point scatterer and the infinite mirror, whereas for the perfectly diffuse object the object spectrum is completely washed out, forming a uniform background.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. A. Kravtsov, A. I. Saichev, Sov. Phys. Usp. 25, 494 (1982).
    [CrossRef]
  2. Yu. A. Kravtsov, A. I. Saichev, J. Opt. Soc. Am. A 2, 2100 (1985).
    [CrossRef]
  3. E. Jakeman, J. Opt. Soc. Am. A 5, 1638 (1988).
    [CrossRef]
  4. E. Jakeman, J. Phys. D 24, 227 (1991).
    [CrossRef]
  5. T. Mavroidis, J. C. Dainty, Opt. Lett. 15, 857 (1990).
    [CrossRef] [PubMed]
  6. A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
    [CrossRef]
  7. H. T. Yura, Appl. Opt. 11, 1399 (1972).
    [CrossRef] [PubMed]
  8. J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, Berlin, 1984), p. 253.
  9. R. Barakat, Opt. Acta 18, 683 (1971).
    [CrossRef]
  10. J. H. Shapiro, J. Opt. Soc. Am. 66, 460 (1976).
    [CrossRef]
  11. D. N. G. Roy, G. Yoon, Opt. Lett. 17, 553 (1992).
    [CrossRef] [PubMed]
  12. C. J. Solomon, J. C. Dainty, Opt. Commun. 87, 207 (1992).
    [CrossRef]
  13. J. F. Holmes, Appl. Opt. 30, 2643 (1991).
    [CrossRef] [PubMed]

1992 (3)

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

C. J. Solomon, J. C. Dainty, Opt. Commun. 87, 207 (1992).
[CrossRef]

D. N. G. Roy, G. Yoon, Opt. Lett. 17, 553 (1992).
[CrossRef] [PubMed]

1991 (2)

1990 (1)

1988 (1)

1985 (1)

1982 (1)

Yu. A. Kravtsov, A. I. Saichev, Sov. Phys. Usp. 25, 494 (1982).
[CrossRef]

1976 (1)

1972 (1)

1971 (1)

R. Barakat, Opt. Acta 18, 683 (1971).
[CrossRef]

Barakat, R.

R. Barakat, Opt. Acta 18, 683 (1971).
[CrossRef]

Bogaturov, A. N.

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

Canãs, A. A. D.

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

Dainty, J. C.

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

C. J. Solomon, J. C. Dainty, Opt. Commun. 87, 207 (1992).
[CrossRef]

T. Mavroidis, J. C. Dainty, Opt. Lett. 15, 857 (1990).
[CrossRef] [PubMed]

Gurvich, A. S.

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

Holmes, J. F.

Jakeman, E.

Kravtsov, Yu. A.

Yu. A. Kravtsov, A. I. Saichev, J. Opt. Soc. Am. A 2, 2100 (1985).
[CrossRef]

Yu. A. Kravtsov, A. I. Saichev, Sov. Phys. Usp. 25, 494 (1982).
[CrossRef]

Mavroidis, T.

Myakinin, V. A.

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

Roy, D. N. G.

Saichev, A. I.

Yu. A. Kravtsov, A. I. Saichev, J. Opt. Soc. Am. A 2, 2100 (1985).
[CrossRef]

Yu. A. Kravtsov, A. I. Saichev, Sov. Phys. Usp. 25, 494 (1982).
[CrossRef]

Shapiro, J. H.

Solomon, C. J.

C. J. Solomon, J. C. Dainty, Opt. Commun. 87, 207 (1992).
[CrossRef]

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

Wooder, N. J.

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

Yoon, G.

Yura, H. T.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Phys. D (1)

E. Jakeman, J. Phys. D 24, 227 (1991).
[CrossRef]

Opt. Acta (1)

R. Barakat, Opt. Acta 18, 683 (1971).
[CrossRef]

Opt. Commun. (2)

C. J. Solomon, J. C. Dainty, Opt. Commun. 87, 207 (1992).
[CrossRef]

A. N. Bogaturov, A. A. D. Canãs, J. C. Dainty, A. S. Gurvich, V. A. Myakinin, C. J. Solomon, N. J. Wooder, Opt. Commun. 87, 1 (1992).
[CrossRef]

Opt. Lett. (2)

Sov. Phys. Usp. (1)

Yu. A. Kravtsov, A. I. Saichev, Sov. Phys. Usp. 25, 494 (1982).
[CrossRef]

Other (1)

J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, Berlin, 1984), p. 253.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Schematic of the configuration used in double-passage imaging through turbulence.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

U ( r ) = d v T ( v ) exp [ j k 2 L ( r v ) 2 + ψ 1 ( r , v ) ] ,
U ( α ) = d r U ( r ) g ( r ) exp [ j k 2 L ( α r ) 2 + ψ 2 ( α , r ) ] ,
g ( r ) = δ ( r ) ,
U ( x ) = d α U ( α ) T ( α ) exp ( j k 2 Z f α 2 ) × exp [ j k 2 Z f ( x α ) 2 ] ,
I ( κ ) = d v 1 d v 2 d α T ( v 1 ) T ( v 2 ) T ( α ) × T ( α + λ Z f κ ) H ( κ , α , v 1 , v 2 ) ,
H = exp [ ψ ( r , v 1 ) + ψ ( r , v 2 ) + ψ ( r , α ) + ψ ( r , α + λ Z f κ ) ] = exp { 1 2 [ D ψ ( v 1 v 2 ) + D ψ ( λ Z f κ ) ] } + exp { 1 2 [ D ψ ( α v 2 ) + D ψ ( α + λ Z f κ v 1 ) ] } ,
exp [ ψ ( r , v 1 ) + ψ ( r , v 2 ) ] = exp [ 1 2 D ψ ( v 1 v 2 ) ] .
I ( κ ) p 1 exp [ 1 2 D ψ ( λ Z f κ ) ] τ 0 ( λ Z f κ ) ,
I ( κ ) p 2 τ 0 ( λ Z f κ ) ,
I ( κ ) = τ 0 ( λ Z f κ ) ,
g ( r ) = 1 ,
I ( κ ) m 1 = d α d r T ( α ) T ( α + λ Z f κ ) × exp ( j k L α r ) exp [ D ψ ( r , λ Z f κ ) ] × exp ( j 2 π Z f L κ r ) .
D ψ ( r , λ Z f κ ) = 2 ( 1 ρ 0 | r + λ Z f κ | ) 5 / 3
I ( κ ) m 2 d v d α d r T ( α + λ Z f κ ) T ( α ) × exp ( 2 j k L α r ) exp [ D ψ ( r , v ) ] × exp ( j k L vr ) exp ( j 2 π Z f L κ r ) .
I ( κ ) m 2 d α T ( α ) T ( α + λ Z f κ ) ,
I ( κ ) m 2 = C exp [ ( λ Z f κ ) 2 4 a R 2 ] ,
g ( r 1 ) g ( r 2 ) = I g ( r 1 ) δ ( r 1 r 2 ) ,
I ( κ ) d 1 exp [ 1 2 D ψ ( λ Z f κ ) ] τ 0 ( λ Z f κ ) × I g ( Z f L κ ) exp [ 1 2 D ψ ( λ Z f κ ) ] ,
I g ( κ ) = d r I g ( r ) exp ( j 2 π κ r )
I ( κ ) d 2 τ 0 ( λ Z f κ ) d r I g ( r ) | D ψ ( r λ L ) | 2 ,
D ψ ( r ) = d v exp [ 1 2 D ψ ( v ) ] exp ( j 2 π r v ) ,

Metrics