Abstract

Static interferometers whose optical path difference is not constant over the field of interferences are well adapted to demodulate sensing interferometers in the coherence multiplexing method. In this configuration the correlation peak can be spatially recorded on a linear detector array. However, the determination of the position of the peak maximum amplitude is often difficult because of the spatial sine amplitude modulation. This drawback can be eliminated by using a grating interferometer as a demodulator. In this case it is possible to record, on the detector, only the envelope of the correlation peak.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Goedgebuer, H. Porte, A. Hamel, IEEE J. Quantum Electron. QE-23, 1135 (1987).
    [CrossRef]
  2. F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
    [CrossRef]
  3. Ph. Dabkiewicz, R. Ulrich, in Proceedings of the 3rd European Fiber Optic Communications and Local Area Networks Exposition (Information Gatekeepers, Boston, Mass., 1985), pp. 212–217.
  4. C. Delisle, P. Cielo, Can. J. Phys. 54, 2322 (1976).
    [CrossRef]
  5. P. Connes, Rev. Opt. 38, 157, 416 (1959); >P. Connes, Rev. Opt. 39, 402 (1960).
  6. B. Colombeau, M. Vampouille, C. Froehly, in Progress in Optics XX, E. Wolf, ed. (Elsevier, Amsterdam, 1983), pp. 144–145.
  7. R. Ulrich, in Proceedings of the NATO Advanced Study Institute on Optical Fiber Sensors (Nijhoff, Amsterdam, 1986), pp. 73–130.
  8. A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).
  9. G. Beheim, Appl. Opt. 24, 2335 (1985).
    [CrossRef] [PubMed]
  10. M. Lequime, C. Lecot, H. R. Giovannini, S. J. Huard, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 288 (1990).
  11. Th. Bosselman, R. Ulrich, in Proceedings of the 2nd International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), pp. 361–364.
  12. C. Mariller, M. Lequime, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 121 (1987).

1990 (1)

M. Lequime, C. Lecot, H. R. Giovannini, S. J. Huard, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 288 (1990).

1988 (2)

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[CrossRef]

A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).

1987 (2)

J. P. Goedgebuer, H. Porte, A. Hamel, IEEE J. Quantum Electron. QE-23, 1135 (1987).
[CrossRef]

C. Mariller, M. Lequime, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 121 (1987).

1985 (1)

1976 (1)

C. Delisle, P. Cielo, Can. J. Phys. 54, 2322 (1976).
[CrossRef]

1959 (1)

P. Connes, Rev. Opt. 38, 157, 416 (1959); >P. Connes, Rev. Opt. 39, 402 (1960).

Beheim, G.

Bosselman, Th.

Th. Bosselman, R. Ulrich, in Proceedings of the 2nd International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), pp. 361–364.

Cielo, P.

C. Delisle, P. Cielo, Can. J. Phys. 54, 2322 (1976).
[CrossRef]

Colombeau, B.

B. Colombeau, M. Vampouille, C. Froehly, in Progress in Optics XX, E. Wolf, ed. (Elsevier, Amsterdam, 1983), pp. 144–145.

Connes, P.

P. Connes, Rev. Opt. 38, 157, 416 (1959); >P. Connes, Rev. Opt. 39, 402 (1960).

Dabkiewicz, Ph.

Ph. Dabkiewicz, R. Ulrich, in Proceedings of the 3rd European Fiber Optic Communications and Local Area Networks Exposition (Information Gatekeepers, Boston, Mass., 1985), pp. 212–217.

Delisle, C.

C. Delisle, P. Cielo, Can. J. Phys. 54, 2322 (1976).
[CrossRef]

Farahi, F.

A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[CrossRef]

Froehly, C.

B. Colombeau, M. Vampouille, C. Froehly, in Progress in Optics XX, E. Wolf, ed. (Elsevier, Amsterdam, 1983), pp. 144–145.

Georges, A. S.

A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).

Giovannini, H. R.

M. Lequime, C. Lecot, H. R. Giovannini, S. J. Huard, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 288 (1990).

Goedgebuer, J. P.

J. P. Goedgebuer, H. Porte, A. Hamel, IEEE J. Quantum Electron. QE-23, 1135 (1987).
[CrossRef]

Hamel, A.

J. P. Goedgebuer, H. Porte, A. Hamel, IEEE J. Quantum Electron. QE-23, 1135 (1987).
[CrossRef]

Huard, S. J.

M. Lequime, C. Lecot, H. R. Giovannini, S. J. Huard, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 288 (1990).

Jackson, D. A.

A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[CrossRef]

Jones, J. D. C.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[CrossRef]

A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).

Lecot, C.

M. Lequime, C. Lecot, H. R. Giovannini, S. J. Huard, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 288 (1990).

Lequime, M.

M. Lequime, C. Lecot, H. R. Giovannini, S. J. Huard, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 288 (1990).

C. Mariller, M. Lequime, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 121 (1987).

Mariller, C.

C. Mariller, M. Lequime, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 121 (1987).

Newson, T. P.

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[CrossRef]

A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).

Porte, H.

J. P. Goedgebuer, H. Porte, A. Hamel, IEEE J. Quantum Electron. QE-23, 1135 (1987).
[CrossRef]

Ulrich, R.

Th. Bosselman, R. Ulrich, in Proceedings of the 2nd International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), pp. 361–364.

R. Ulrich, in Proceedings of the NATO Advanced Study Institute on Optical Fiber Sensors (Nijhoff, Amsterdam, 1986), pp. 73–130.

Ph. Dabkiewicz, R. Ulrich, in Proceedings of the 3rd European Fiber Optic Communications and Local Area Networks Exposition (Information Gatekeepers, Boston, Mass., 1985), pp. 212–217.

Vampouille, M.

B. Colombeau, M. Vampouille, C. Froehly, in Progress in Optics XX, E. Wolf, ed. (Elsevier, Amsterdam, 1983), pp. 144–145.

Appl. Opt. (1)

Can. J. Phys. (1)

C. Delisle, P. Cielo, Can. J. Phys. 54, 2322 (1976).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. P. Goedgebuer, H. Porte, A. Hamel, IEEE J. Quantum Electron. QE-23, 1135 (1987).
[CrossRef]

Int. J. Optoelectron. (1)

A. S. Georges, F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Int. J. Optoelectron. 13, 311 (1988).

Opt. Commun. (1)

F. Farahi, T. P. Newson, J. D. C. Jones, D. A. Jackson, Opt. Commun. 65, 319 (1988).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

M. Lequime, C. Lecot, H. R. Giovannini, S. J. Huard, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 288 (1990).

C. Mariller, M. Lequime, Proc. Soc. Photo-Opt. Instrum. Eng. 298, 121 (1987).

Rev. Opt. (1)

P. Connes, Rev. Opt. 38, 157, 416 (1959); >P. Connes, Rev. Opt. 39, 402 (1960).

Other (4)

B. Colombeau, M. Vampouille, C. Froehly, in Progress in Optics XX, E. Wolf, ed. (Elsevier, Amsterdam, 1983), pp. 144–145.

R. Ulrich, in Proceedings of the NATO Advanced Study Institute on Optical Fiber Sensors (Nijhoff, Amsterdam, 1986), pp. 73–130.

Th. Bosselman, R. Ulrich, in Proceedings of the 2nd International Conference on Optical Fiber Sensors (VDE-Verlag, Berlin, 1984), pp. 361–364.

Ph. Dabkiewicz, R. Ulrich, in Proceedings of the 3rd European Fiber Optic Communications and Local Area Networks Exposition (Information Gatekeepers, Boston, Mass., 1985), pp. 212–217.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of the grating interferometer. G2′, the image of G2 through BS.

Fig. 2
Fig. 2

Experimental setup. Gratings G1 and G2 can be rotated by the same angle to change the wave number of the Littrow mount.

Fig. 3
Fig. 3

Recorded signals R(X): (a) Δs = 374 μm, (b) Δs = 690 μm. The gratings are in a Littrow mount for λ0 = 850 nm.

Fig. 4
Fig. 4

Recorded signal R(X) for Δs = 690 μm. The gratings are in a Littrow mount for λ0 ≈ 820 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F 1 ( σ ) = 1 k F 0 ( σ ) [ 1 + cos ( 2 π σ Δ s ) ] ,
R = 1 k k σ F 0 ( σ ) [ 1 + cos ( 2 π σ Δ s ) ] × [ 1 + cos ( 2 π σ Δ d ) ] d σ ,
Δ d ( σ , x ) = 2 α ( σ ) x ,
Δ d ( x , σ ) = 2 x p σ cos i 0 4 x tan i 0 .
R ( X ) = 1 + A + 1 2 B 1 + 1 2 B 2 ,
A = sin U U cos [ 4 π X G ( 1 p cos i 0 2 σ 1 tan i 0 ) ] ,
B 1 = sin ( U π Δ s Δ σ ) U π Δ s Δ σ × cos [ 4 π X G ( 1 p cos i 0 2 σ 1 tan i 0 ) + 2 π σ 1 Δ s ] ,
B 2 = sin ( U + π Δ s Δ σ ) U + π Δ s Δ σ × cos [ 4 π X G ( 1 p cos i 0 2 σ 1 tan i 0 ) 2 π σ 1 Δ s ] ,
U = 4 π X G Δ σ tan i 0 .
1 p cos i 0 2 σ 0 tan i 0 = 0 ,

Metrics