Abstract

A four-channel substrate wavelength-division (de)multiplexer based on superimposed holographic gratings, three-dimensional Bragg diffraction, and substrate wave propagation is demonstrated. The device operates at the He–Ne laser wavelengths of 543.0, 594.1, 611.9, and 632.8 nm and has a measured maximum diffraction efficiency of 72% with less than −30 dB of channel cross talk. It is shown that the polarizations of the demultiplexed beams can be controlled by the grating index modulation, as predicted by holographic diffraction theory. The substrate wavelength-division (de)multiplexer device, whose demultiplexed signal propagation directions can be defined during fabrication, should find widespread use in integrated fiber-optic communication networks and systems.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Wisely, Electron. Lett. 27, 520 (1991).
    [CrossRef]
  2. B. Moslehi, P. Harvey, J. Ng, T. Jannson, Opt. Lett. 14, 1088 (1989).
    [CrossRef] [PubMed]
  3. C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992).
    [CrossRef]
  4. M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, IEEE Photon. Technol. Lett. 3, 36 (1991).
    [CrossRef]
  5. R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, Appl. Opt. 28, 4939 (1989).
    [CrossRef] [PubMed]
  6. M. Kato, Y. T. Huang, R. K. Kostuk, J. Opt. Soc. Am. A 7, 1441 (1990).
    [CrossRef]
  7. Y. T. Huang, D. C. Su, Y. K. Tsai, Opt. Lett. 17, 1629 (1992).
    [CrossRef] [PubMed]
  8. M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, Appl. Opt. 31, 236 (1992).
    [CrossRef] [PubMed]
  9. R. K. Kostuk, M. Kato, Y. T. Huang, Appl. Opt. 29, 3848 (1990).
    [CrossRef] [PubMed]

1992 (3)

1991 (2)

D. R. Wisely, Electron. Lett. 27, 520 (1991).
[CrossRef]

M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, IEEE Photon. Technol. Lett. 3, 36 (1991).
[CrossRef]

1990 (2)

1989 (2)

Chen, R. T.

M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, Appl. Opt. 31, 236 (1992).
[CrossRef] [PubMed]

M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, IEEE Photon. Technol. Lett. 3, 36 (1991).
[CrossRef]

Cremer, C.

C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992).
[CrossRef]

Ebbinghaus, G.

C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992).
[CrossRef]

Emeis, N.

C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992).
[CrossRef]

Harvey, P.

Heise, G.

C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992).
[CrossRef]

Hetherington, D.

Huang, Y. T.

Jannson, T.

Kato, M.

Kostuk, R. K.

Moslehi, B.

Ng, J.

Schier, M.

C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992).
[CrossRef]

Sonek, G. J.

M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, Appl. Opt. 31, 236 (1992).
[CrossRef] [PubMed]

M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, IEEE Photon. Technol. Lett. 3, 36 (1991).
[CrossRef]

Stoll, L.

C. Cremer, N. Emeis, M. Schier, G. Heise, G. Ebbinghaus, L. Stoll, IEEE Photon. Technol. Lett. 4, 108 (1992).
[CrossRef]

Su, D. C.

Tsai, Y. K.

Wang, M. R.

M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, Appl. Opt. 31, 236 (1992).
[CrossRef] [PubMed]

M. R. Wang, G. J. Sonek, R. T. Chen, T. Jannson, IEEE Photon. Technol. Lett. 3, 36 (1991).
[CrossRef]

Wisely, D. R.

D. R. Wisely, Electron. Lett. 27, 520 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the superimposed holographic gratings and substrate beam propagations and diffractions for the formation of the WDM device.

Fig. 2
Fig. 2

Photograph of a four-channel substrate WDM device operating at the design wavelengths of 543.0, 594.1, 611.9, and 632.8 nm with corresponding planar diffraction angles of 55°, 65°, 75°, and 85°, respectively.

Fig. 3
Fig. 3

Calculated wavelength selectivities and measured diffraction efficiencies for the 3-D Bragg diffraction within the substrate WDM device.

Fig. 4
Fig. 4

Diffraction efficiency and diffracted beam polarization as a function of grating index modulation for the TE mode (solid curves) and the TM mode (dashed curves). For the calculation, an unslanted diffraction phase grating has been assumed. The wavelength is 632.8 nm, the planar diffraction angle ξ is 85°, the substrate beam bouncing angle α is 50°, and the emulsion thickness is 25 μm.

Metrics