Abstract

Mechanical forces can be converted into electrical signal frequencies at high linearity and precision over a seven-decade range by use of a diode-pumped Nd:YAG laser and a mixing photodiode. Active signal stabilization of the laser is not required. The observed errors (drift, creep, and hysteresis) are at the lower measuring limit. Diode-pumped Nd:YAG technology offers the chance to realize miniaturized high-accuracy sensors for force and acceleration.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Jäger, in Proceedings of the 11th Triennial World Congress of the International Measurementation Confederation (Instrument Society of America, Houston, Tex., 1988), pp. 431–445.
  2. W. Holzapfel, W. Settgast, Appl. Phys. B 49, 169 (1989).
    [Crossref]
  3. W. Holzapfel, W. Settgast, Appl. Opt. 28, 4585 (1989).
    [Crossref] [PubMed]
  4. S. Tai, K. Kyuma, M. Nunoshita, Appl. Opt. 22, 1771 (1983).
    [Crossref] [PubMed]
  5. F. Maystre, R. Dändliker, Appl. Opt. 28, 1995 (1989).
    [Crossref] [PubMed]
  6. H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, Opt. Lett. 18, 317 (1993).
    [Crossref] [PubMed]
  7. A. Owyoung, P. Esherick, Opt. Lett. 12, 999 (1987).
    [Crossref] [PubMed]
  8. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), pp. 367 and 49.
  9. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [Crossref] [PubMed]

1993 (1)

1989 (3)

1987 (1)

1985 (1)

1983 (1)

Byer, R. L.

Dändliker, R.

Dixon, G. J.

Esherick, P.

Holzapfel, W.

W. Holzapfel, W. Settgast, Appl. Phys. B 49, 169 (1989).
[Crossref]

W. Holzapfel, W. Settgast, Appl. Opt. 28, 4585 (1989).
[Crossref] [PubMed]

Jäger, G.

G. Jäger, in Proceedings of the 11th Triennial World Congress of the International Measurementation Confederation (Instrument Society of America, Houston, Tex., 1988), pp. 431–445.

Kane, T. J.

Kim, B. Y.

Kim, H. K.

Kim, S. K.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), pp. 367 and 49.

Kyuma, K.

Maystre, F.

Nunoshita, M.

Owyoung, A.

Park, H. G.

Settgast, W.

W. Holzapfel, W. Settgast, Appl. Phys. B 49, 169 (1989).
[Crossref]

W. Holzapfel, W. Settgast, Appl. Opt. 28, 4585 (1989).
[Crossref] [PubMed]

Tai, S.

Zhou, B.

Appl. Opt. (3)

Appl. Phys. B (1)

W. Holzapfel, W. Settgast, Appl. Phys. B 49, 169 (1989).
[Crossref]

Opt. Lett. (3)

Other (2)

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), pp. 367 and 49.

G. Jäger, in Proceedings of the 11th Triennial World Congress of the International Measurementation Confederation (Instrument Society of America, Houston, Tex., 1988), pp. 431–445.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Modular experimental setup of the laser balance.

Fig. 2
Fig. 2

Output signal of the modular experimental setup with step load (m = 1 kg, counter gate time 300 ms).

Fig. 3
Fig. 3

Static characteristics of the modular (E1) and the miniaturized (E2) integrated experimental setup. E1: Hemispherical resonator with optical length D0 = 179.7 mm and radii of curvature r1 = 200 mm, r2 = ∞; crystal with geometrical length L = 5 mm and diameter W = 3 mm. E2: Resonator with D0 = 2.64 mm, r1 = 20, r2 = ∞; crystal with L = 1.5 mm, W = 2 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ f n = E n F , with E n = 2 ( FSR ) λ C 0 W k s ,

Metrics