Abstract

A novel noninvasive acousto-optic device for polarization coupling and frequency shifting in optical fiber based on bulk-shear acoustic waves is reported. By use of a coupled-mode theory, an expression is obtained to predict the amplitude coupling efficiency. An elliptical-core-fiber polarization modulator is demonstrated at a center acoustic frequency of 75 MHz. An amplitude coupling efficiency of 14.3% and a 3-dB bandwidth of 3.6 MHz were observed, comparing well with the predicted results and also comparing favorably with similar devices based on longitudinal strain waves.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Patterson, “Noninvasive acousto-optic devices for optical fibers,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1990).
  2. G. S. Kino, W. P. Risk, Rev. Phys. Appl. 20, 333 (1985).
    [CrossRef]
  3. W. P. Risk, G. S. Kino, Opt. Lett. 11, 115 (1986).
    [CrossRef] [PubMed]
  4. W. P. Risk, G. S. Kino, Opt. Lett. 11, 48 (1986).
    [CrossRef] [PubMed]
  5. W. Eickhoff, Electron. Lett. 16, 762 (1980).
    [CrossRef]
  6. J. F. Sevic, “Polarization eigenmode coupling in elliptical-core optical fiber using the acousto-optic effect,” M.S. thesis (Illinois Institute of Technology, Chicago, Ill., 1992).
  7. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 18, p. 382.
  8. D. Marcuse, Bell Syst. Tech. J. 52, 817 (1973).
  9. R. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1985), pp. 241–254.
  10. W. P. Risk, G. S. Kino, B. T. Khuri-Yakub, Opt. Lett. 11, 578 (1986).
    [CrossRef] [PubMed]

1986

1985

G. S. Kino, W. P. Risk, Rev. Phys. Appl. 20, 333 (1985).
[CrossRef]

1980

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

1973

D. Marcuse, Bell Syst. Tech. J. 52, 817 (1973).

Eickhoff, W.

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

Khuri-Yakub, B. T.

Kino, G. S.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 18, p. 382.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 52, 817 (1973).

Nye, R.

R. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1985), pp. 241–254.

Patterson, D. B.

D. B. Patterson, “Noninvasive acousto-optic devices for optical fibers,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1990).

Risk, W. P.

Sevic, J. F.

J. F. Sevic, “Polarization eigenmode coupling in elliptical-core optical fiber using the acousto-optic effect,” M.S. thesis (Illinois Institute of Technology, Chicago, Ill., 1992).

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 18, p. 382.

Bell Syst. Tech. J.

D. Marcuse, Bell Syst. Tech. J. 52, 817 (1973).

Electron. Lett.

W. Eickhoff, Electron. Lett. 16, 762 (1980).
[CrossRef]

Opt. Lett.

Rev. Phys. Appl.

G. S. Kino, W. P. Risk, Rev. Phys. Appl. 20, 333 (1985).
[CrossRef]

Other

J. F. Sevic, “Polarization eigenmode coupling in elliptical-core optical fiber using the acousto-optic effect,” M.S. thesis (Illinois Institute of Technology, Chicago, Ill., 1992).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983), Chap. 18, p. 382.

R. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, 1985), pp. 241–254.

D. B. Patterson, “Noninvasive acousto-optic devices for optical fibers,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the polarization modulator.

Fig. 2
Fig. 2

Experimental configuration for observation of polarization modulation.

Fig. 3
Fig. 3

Amplitude coupling efficiency versus frequency at an rf input power of 0.5 W.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E x a x E 0 Ψ x ( x , y ) f x ( β x , z ) exp ( j ω t ) ,
E y a y E 0 Ψ y ( x , y ) f y ( β y , z ) exp ( j ω t ) ,
f y z + j β y f y = j ω 4 P y f x × A [ ( Ψ y * a y T Δ ¯ ¯ ) Ψ x a x ] d A ,
Δ ¯ ¯ = [ Δ 1 Δ 2 Δ 3 Δ 4 Δ 5 Δ 6 ] = 0 n 0 4 [ p 11 S 1 + p 12 ( S 2 + S 3 ) p 11 S 2 + p 12 ( S 1 + S 3 ) p 11 S 3 + p 12 ( S 1 + S 2 ) p 44 S 4 p 44 S 5 p 44 S 6 ] .
Δ ¯ ¯ = [ Δ 1 Δ 6 Δ 5 Δ 6 Δ 2 Δ 4 Δ 5 Δ 4 Δ 3 ] ,
f y z + j β y f y = j ω 0 n 0 4 p 44 4 P y f x A ( S 6 Ψ y * Ψ x ) d A .
P y = 1 2 ( r 0 μ 0 ) 1 / 2 A | Ψ y | 2 d A 1 2 ( r 0 μ 0 ) 1 / 2 A | Ψ y * Ψ x | d A ,
E y a y j E 0 Ψ y ( x , y ) η ( Δ f , L ) exp ( j ω t ) × exp [ j ( β x + β y 2 ) L ] ,
η ( Δ f , L ) = κ L sinc { ( κ L ) 2 + [ π ( k a z Δ β ) L ] 2 } 1 / 2 ,
η ( Δ f , L ) = κ L sinc [ ( κ L ) 2 + ( π Δ f f 0 L L B ) 2 ] 1 / 2 .

Metrics