Abstract

Third-order dispersion in femtosecond solid-state lasers can induce a resonant transfer of energy from the mode-locked pulse into a dispersive background. The presence of intensity-dependent self-amplitude modulation can compensate for this loss. A condition for energy balance between these two effects is evaluated and related to the stability of femtosecond pulse generation.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.
  2. P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993).
    [CrossRef] [PubMed]
  3. B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993).
    [CrossRef]
  4. T. Brabec, Ch. Spielmann, F. Krausz, Opt. Lett. 16, 1961 (1991).
    [CrossRef] [PubMed]
  5. S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
    [CrossRef]
  6. J. P. Gordon, J. Opt. Soc. Am. B 9, 91 (1992).
    [CrossRef]
  7. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef] [PubMed]
  8. S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
    [CrossRef]
  9. J. N. Elgin, Opt. Lett. 17, 1409 (1992).
    [CrossRef] [PubMed]
  10. J. N. Elgin, Phys. Rev. A 47, (1993).
    [CrossRef] [PubMed]
  11. H. A. Haus, J. D. Moores, L. E. Nelson, Opt. Lett. 18, 51 (1993).
    [CrossRef] [PubMed]
  12. C. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 17, 1289 (1992).
    [CrossRef] [PubMed]

1993 (4)

1992 (4)

1991 (1)

1989 (1)

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

1986 (1)

Asaki, M. T.

C. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 17, 1289 (1992).
[CrossRef] [PubMed]

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Backus, S.

Brabec, T.

Chen, H. H.

Chi, S.

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Curley, P. F.

Elgin, J. N.

Garvey, D.

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Gordon, J. P.

Haus, H. A.

Huang, C.

Huang, C. P.

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Kapteyn, H. C.

C. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 17, 1289 (1992).
[CrossRef] [PubMed]

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Kelly, S. M. J.

S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

Krausz, F.

Lee, Y. C.

Menyuk, C. R.

Moores, J. D.

Murnane, M. M.

C. Huang, M. T. Asaki, S. Backus, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 17, 1289 (1992).
[CrossRef] [PubMed]

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Nathel, H.

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Nelson, L. E.

Proctor, B.

B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993).
[CrossRef]

Schmidt, A. J.

Spielmann, Ch.

Wai, P. K. A.

Wen, S.

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Wintner, E.

Wise, F.

B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993).
[CrossRef]

Zhou, J.

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Appl. Phys. Lett. (1)

B. Proctor, F. Wise, Appl. Phys. Lett. 62, 470 (1993).
[CrossRef]

Electron. Lett. (1)

S. M. J. Kelly, Electron. Lett. 28, 806 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (6)

Opt. Quantum Electron. (1)

S. Wen, S. Chi, Opt. Quantum Electron. 21, 335 (1989).
[CrossRef]

Phys. Rev. A (1)

J. N. Elgin, Phys. Rev. A 47, (1993).
[CrossRef] [PubMed]

Other (1)

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. Nathel, H. C. Kapteyn, M. M. Murnane, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper PD17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of a soliton in the presence of TOD-induced resonant phase matching. The frequency ωr denotes the position of the resonance with respect to the center frequency of the soliton, whereas ω0 is the soliton spectral width.

Fig. 2
Fig. 2

Ratio of dispersive energy to total intracavity energy Wr/W, versus = (π/2)(ω0/ωr). Curves 1 and 2 are for κ/ϕ = 5 × 10−3 and 5 × 10−2, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

υ z = i | D 2 | 2 2 υ T 2 + ( κ + i ϕ ) | υ | 2 υ | D 3 | 6 3 υ T 3 + ( g l ) υ ,
1 π d d x + | b ˆ ( x , ξ ) | 2 d ξ = 8 π 2 2 + ξ 2 ( ξ 2 + η 1 2 ) 2 × sech 2 ( π ξ 2 η 1 ) sin [ 4 D ( ξ ) x ] D ( ξ ) d ξ ,
1 π d d x + | b ˆ ( x , ξ ) | 2 d ξ = π 2 4 3 sech 2 ( π 4 η 1 ) = F ,
2 d η 1 d x = 1 π d d x + ln [ 1 | b ( x , ξ ) | 2 ] d ξ F ,
d W 0 d z = F = 1 2 π W 0 2 τ 0 ϕ ( π 2 ) 3 sech 2 ( π 2 ) ,
d W 0 d z = ( g l ) W 0 + S F ,
d W r d z = ( g l ) W r + F ,
W r W = F S = 48 π ϕ κ ( π 2 ) 3 sech 2 ( π 2 ) .
2 π = 2 3 π D 3 D 2 τ 0 = ω 0 ω r < 0 . 35 .

Metrics