Abstract

Fiber tapering reduces the effective area and increases the Kerr nonlinear phase shift of the fundamental mode. A significant nonlinear effect was observed in a micrometer-diameter centimeter-long section of tapered fiber at a wavelength of 1550 nm. The numerical simulation of a second-order soliton entering the taper gives a spectral widening that matches the observed spectrum.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 376.
  2. F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, J. Bures, Appl. Opt. 26, 444 (1987).
    [CrossRef] [PubMed]
  3. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).
  4. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 2, p. 43.
  5. H. H. Kuehl, J. Opt. Soc. Am. B 5, 709 (1988).
    [CrossRef]
  6. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  7. F. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

1988 (1)

1987 (1)

1986 (2)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 2, p. 43.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

Bures, J.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, J. Bures, Appl. Opt. 26, 444 (1987).
[CrossRef] [PubMed]

Gordon, J. P.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

Kuehl, H. H.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

F. Gonthier, J. Lapierre, C. Veilleux, S. Lacroix, J. Bures, Appl. Opt. 26, 444 (1987).
[CrossRef] [PubMed]

Lapierre, J.

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 376.

Mitschke, F. M.

Mollenauer, L. F.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

Synder, A. W.

A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 376.

Veilleux, C.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Proc. Inst. Electr. Eng. Part J (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, F. Gonthier, Proc. Inst. Electr. Eng. Part J 138, 343 (1991).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chap. 2, p. 43.

A. W. Synder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 376.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Computed effective area of the fundamental mode of Corning SMF-28 fiber as a function of fiber diameter at λ = 1550 nm.

Fig. 2
Fig. 2

Measured (solid curve) and simulated (dashed curve) output spectra.

Fig. 3
Fig. 3

Computed dispersion of the fundamental at λ = 1550 nm in Corning SMF-28 fiber.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β β = k [ A ( n n ¯ ) Ψ ¯ 2 d A ] A Ψ ¯ 2 dA = k n 2 P A eff ,
i A z = β 2 2 A T 2 γ | A | 2 A ,
β 2 = λ 2 ( 2 π c ) 2 ( λ 2 2 β λ 2 + 2 λ β λ ) ,

Metrics