Abstract

The sensitivity to hydrostatic pressure, temperature, and strain of elliptical-core, D-shaped, bow-tie highly birefringent fibers is experimentally investigated. Both polarimetric and polarization sensitive LP01–LP11 intermodal interferometric responses are studied. The sensitivities are expressed in terms of the experimental parameters Tχ,j describing a 2π phase shift in the cosine response. It is found that bow-tie fibers exhibit a linear response to all the studied external perturbations except for the polarimetric response of the fundamental mode to temperature, while elliptical-core and D-shaped fibers are characterized by a nonlinear sensitivity to both temperature and hydrostatic pressure. The application to fiber-optic sensors of each type of fiber is discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Eickhoff, Opt. Lett. 6, 204 (1981).
    [CrossRef] [PubMed]
  2. S.-Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
    [CrossRef]
  3. J. N. Blake, Opt. Lett. 17, 589 (1992).
    [CrossRef] [PubMed]
  4. W. J. Bock, T. R. Wolinski, Opt. Lett. 15, 1434 (1990).
    [CrossRef] [PubMed]
  5. T. A. Eftimov, Opt. Quantum Electron. 23, 1143 (1991).
    [CrossRef]
  6. W. J. Bock, A. W. Domanski, T. R. Wolinski, Appl. Opt. 29, 3484 (1990).
    [CrossRef] [PubMed]
  7. K. Mochizuki, Y. Namihira, Y. Ejiri, Appl. Opt. 21, 4223 (1982).
    [CrossRef] [PubMed]
  8. R. Wisniewski, W. Bock, Rev. Sci. Instrum. 62, 2955 (1991).
    [CrossRef]

1992 (1)

1991 (2)

T. A. Eftimov, Opt. Quantum Electron. 23, 1143 (1991).
[CrossRef]

R. Wisniewski, W. Bock, Rev. Sci. Instrum. 62, 2955 (1991).
[CrossRef]

1990 (3)

1982 (1)

1981 (1)

Blake, J. N.

J. N. Blake, Opt. Lett. 17, 589 (1992).
[CrossRef] [PubMed]

S.-Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

Bock, W.

R. Wisniewski, W. Bock, Rev. Sci. Instrum. 62, 2955 (1991).
[CrossRef]

Bock, W. J.

Domanski, A. W.

Eftimov, T. A.

T. A. Eftimov, Opt. Quantum Electron. 23, 1143 (1991).
[CrossRef]

Eickhoff, W.

Ejiri, Y.

Huang, S.-Y.

S.-Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

Kim, B. Y.

S.-Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

Mochizuki, K.

Namihira, Y.

Wisniewski, R.

R. Wisniewski, W. Bock, Rev. Sci. Instrum. 62, 2955 (1991).
[CrossRef]

Wolinski, T. R.

Appl. Opt. (2)

J. Lightwave Technol. (1)

S.-Y. Huang, J. N. Blake, B. Y. Kim, J. Lightwave Technol. 8, 23 (1990).
[CrossRef]

Opt. Lett. (3)

Opt. Quantum Electron. (1)

T. A. Eftimov, Opt. Quantum Electron. 23, 1143 (1991).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Wisniewski, W. Bock, Rev. Sci. Instrum. 62, 2955 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Propagation constant diagram of the four polarization modes in a LP01–LP11 bimodal fiber.

Fig. 2
Fig. 2

Experimental setup for measuring the responses to hydrostatic pressure, temperature, and axial strain. A, analyzer.

Fig. 3
Fig. 3

Nonconstant sensitivities of an E-core fiber to (a) ambient temperature changes and (b) hydrostatic pressure.

Fig. 4
Fig. 4

Nonconstant sensitivity of a D-shaped fiber to temperature changes.

Tables (1)

Tables Icon

Table 1 Measured Responses from the Three Fibers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I X , Y ( x , y , z ) = 1 2 [ f 0 2 ( x , y ) + f 1 2 ( x , y ) + 2 f 0 ( x , y ) f 1 ( x , y ) cos ( Φ X , Y ) ] ,
I 45 ° ( x , y , z ) = 1 4 { f 0 2 ( x , y ) [ 1 + cos ( Φ 0 ) ] + f 1 2 ( x , y ) [ 1 + cos ( Φ 1 ) ] } + 1 2 f 0 ( x , y ) f 1 ( x , y ) cos [ ( Φ X + Φ Y ) / 2 ] × cos ( Φ 0 / 2 ) cos ( Φ 1 / 2 ) ,
P 45 ° ( z ) = 1 2 { 1 + 1 2 [ cos ( Φ 0 ) + cos ( Φ 1 ) ] } ,
I 45 ° ( x , y , z ) = 1 4 f 0 2 ( 0 , y ) [ 1 + cos ( Φ 0 ) ] .
δ Φ i = 2 π T p , i δ p + 2 π T T , i δ T + 2 π T , i δ ( i = 0 , 1 , x , y ) .
L T χ , i = C ,

Metrics