Abstract

A morphological optoelectronic image processor based on the threshold decomposition concept is described and demonstrated. Binary slices of a gray-scale input image are optically convolved with a binary structuring element of arbitrary size and shape in a noncoherent convolver. The slices are displayed on a liquid-crystal spatial light modulator of 320 × 264 pixels. The kernels are implemented as modifications of the system impulse response. The processor’s convolution patterns are recorded with a CCD camera and fed into a PC by a frame grabber. Subsequent elementary morphological operations are looped. Examples of processing an input image of 256 × 256 pixels and 16 gray levels with kernels of arbitrary size are presented.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Matheron, Random Sets and Integral Geometry (Wiley, New York, 1975).
  2. J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1982).
  3. J. Serra, ed., Image Analysis and Mathematical Morphology, Theoretical Advances (Academic, London, 1988).
  4. E. R. Dougherty, ed., Mathematical Morphology in Image Processing (Dekker, New York, 1993).
  5. I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990).
  6. P. Maragos, R. W. Schafer, IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1170 (1987).
    [CrossRef]
  7. J. M. Hereford, W. T. Rhodes, Opt. Eng. 27, 274 (1988).
  8. Y. Li, A. Kostrzewski, D. H. Kim, G. Eichmann, Opt. Lett. 14, 981 (1989).
    [CrossRef] [PubMed]
  9. P. Cambon, J. L. De Bougrenet de la Tocknaye, Appl. Opt. 28, 3456 (1989).
    [CrossRef] [PubMed]
  10. J. P. Fitch, E. J. Coyle, N. C. Gallagher, IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183 (1984).
    [CrossRef]
  11. J. Knopp, M. F. Becker, Appl. Opt. 17, 984 (1978).
    [CrossRef] [PubMed]
  12. P. Maragos, Opt. Eng. 26, 623 (1987).
  13. V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, Appl. Opt. 32, 692 (1993).
    [CrossRef] [PubMed]
  14. V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, Int. J. Opt. Comput. 2, 367 (1993).

1993

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, Int. J. Opt. Comput. 2, 367 (1993).

V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, Appl. Opt. 32, 692 (1993).
[CrossRef] [PubMed]

1989

1988

J. M. Hereford, W. T. Rhodes, Opt. Eng. 27, 274 (1988).

1987

P. Maragos, R. W. Schafer, IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1170 (1987).
[CrossRef]

P. Maragos, Opt. Eng. 26, 623 (1987).

1984

J. P. Fitch, E. J. Coyle, N. C. Gallagher, IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183 (1984).
[CrossRef]

1978

Becker, M. F.

Cambon, P.

Cichocki, T.

Coyle, E. J.

J. P. Fitch, E. J. Coyle, N. C. Gallagher, IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183 (1984).
[CrossRef]

De Bougrenet de la Tocknaye, J. L.

Eichmann, G.

Fitch, J. P.

J. P. Fitch, E. J. Coyle, N. C. Gallagher, IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183 (1984).
[CrossRef]

Gallagher, N. C.

J. P. Fitch, E. J. Coyle, N. C. Gallagher, IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183 (1984).
[CrossRef]

Garcia, J.

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, Int. J. Opt. Comput. 2, 367 (1993).

Gedziorowski, M.

Hereford, J. M.

J. M. Hereford, W. T. Rhodes, Opt. Eng. 27, 274 (1988).

Kim, D. H.

Knopp, J.

Kober, V.

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, Int. J. Opt. Comput. 2, 367 (1993).

V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, Appl. Opt. 32, 692 (1993).
[CrossRef] [PubMed]

Kostrzewski, A.

Li, Y.

Maragos, P.

P. Maragos, R. W. Schafer, IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1170 (1987).
[CrossRef]

P. Maragos, Opt. Eng. 26, 623 (1987).

Matheron, G.

G. Matheron, Random Sets and Integral Geometry (Wiley, New York, 1975).

Pitas, I.

I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990).

Rhodes, W. T.

J. M. Hereford, W. T. Rhodes, Opt. Eng. 27, 274 (1988).

Schafer, R. W.

P. Maragos, R. W. Schafer, IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1170 (1987).
[CrossRef]

Serra, J.

J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1982).

Szoplik, T.

V. Kober, T. Cichocki, M. Gedziorowski, T. Szoplik, Appl. Opt. 32, 692 (1993).
[CrossRef] [PubMed]

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, Int. J. Opt. Comput. 2, 367 (1993).

Venetsanopoulos, A. N.

I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990).

Yaroslavsky, L. P.

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, Int. J. Opt. Comput. 2, 367 (1993).

Appl. Opt.

IEEE Trans. Acoust. Speech Signal Process.

P. Maragos, R. W. Schafer, IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1170 (1987).
[CrossRef]

J. P. Fitch, E. J. Coyle, N. C. Gallagher, IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183 (1984).
[CrossRef]

Int. J. Opt. Comput.

V. Kober, J. Garcia, T. Szoplik, L. P. Yaroslavsky, Int. J. Opt. Comput. 2, 367 (1993).

Opt. Eng.

P. Maragos, Opt. Eng. 26, 623 (1987).

J. M. Hereford, W. T. Rhodes, Opt. Eng. 27, 274 (1988).

Opt. Lett.

Other

G. Matheron, Random Sets and Integral Geometry (Wiley, New York, 1975).

J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1982).

J. Serra, ed., Image Analysis and Mathematical Morphology, Theoretical Advances (Academic, London, 1988).

E. R. Dougherty, ed., Mathematical Morphology in Image Processing (Dekker, New York, 1993).

I. Pitas, A. N. Venetsanopoulos, Nonlinear Digital Filters. Principles and Applications (Kluwer, Dordrecht, The Netherlands, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Block diagram of the morphological optoelectronic image processor. Operations are shown in circles, and data arrays are shown in squares.

Fig. 2
Fig. 2

Optoelectronic setup of the morphological processor with feedback. The convolver, which uses a plane of misfocus, convolves binary slices of an input image displayed on a liquid-crystal SLM with binary structuring elements of controlled size and shape. The PC is used as image slicer, frame grabber, thresholder, pointwise operator, and postprocessor.

Fig. 3
Fig. 3

Experimental results: (a) The input image of 256 × 256 pixels with 16 gray levels, (b) Morphological opening by use of a square binary kernel of 5 × 5 pixels with no corner pixels, (c) Morphological gradient by use of a square binary kernel of 3 × 3 pixels, (d) Digitally calculated morphological gradient by use of a square binary kernel of 3 × 3 pixels.

Metrics