Abstract

We report on the near-infrared absorption, emission, and lifetime data of Cr4+:Lu3Al5O12 (Cr:LAG) and compare the results with the known laser material Cr4+-doped Y3Al5O12 (Cr:YAG). Lu3Al5O12 has a smaller unit cell than Y3Al5O12, and this feature is reflected in its spectroscopic properties. The low-temperature luminescence spectrum is shifted by 85 cm−1 to higher energy compared with Cr:YAG. The luminescence lifetime of Cr:LAG at 10 K is 28.7 μs (Cr:YAG, 30.6 μs) and at 300 K is 4.3 μs (Cr:YAG, 3.5 μs). From these lifetimes we postulate that the quantum efficiency in Cr:LAG is higher than in Cr:YAG. We discuss the potential of Cr:LAG as a tunable near-infrared laser.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Jia, B. M. Tissue, L. Lu, K. R. Hoffman, W. M. Yen, in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–91.
  2. K. R. Hoffman, U. Hömmerich, S. M. Jacobsen, W. M. Yen, J. Lumin. 52, 277 (1992).
    [CrossRef]
  3. S. Geller, Z. Kristallogr. 125, 1 (1967).
    [CrossRef]
  4. A. V. Shestakov, Russian Academy of Sciences, Moscow, Russia (personal communication, 1991).
  5. N. I. Borodin, A. G. Okhrimchuk, A. V. Shestakov, in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 42–46.
  6. P. S. May, H. U. Güdel, J. Lumin. 46, 277 (1990).
    [CrossRef]

1992 (1)

K. R. Hoffman, U. Hömmerich, S. M. Jacobsen, W. M. Yen, J. Lumin. 52, 277 (1992).
[CrossRef]

1990 (1)

P. S. May, H. U. Güdel, J. Lumin. 46, 277 (1990).
[CrossRef]

1967 (1)

S. Geller, Z. Kristallogr. 125, 1 (1967).
[CrossRef]

Borodin, N. I.

N. I. Borodin, A. G. Okhrimchuk, A. V. Shestakov, in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 42–46.

Geller, S.

S. Geller, Z. Kristallogr. 125, 1 (1967).
[CrossRef]

Güdel, H. U.

P. S. May, H. U. Güdel, J. Lumin. 46, 277 (1990).
[CrossRef]

Hoffman, K. R.

K. R. Hoffman, U. Hömmerich, S. M. Jacobsen, W. M. Yen, J. Lumin. 52, 277 (1992).
[CrossRef]

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffman, W. M. Yen, in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–91.

Hömmerich, U.

K. R. Hoffman, U. Hömmerich, S. M. Jacobsen, W. M. Yen, J. Lumin. 52, 277 (1992).
[CrossRef]

Jacobsen, S. M.

K. R. Hoffman, U. Hömmerich, S. M. Jacobsen, W. M. Yen, J. Lumin. 52, 277 (1992).
[CrossRef]

Jia, W.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffman, W. M. Yen, in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–91.

Lu, L.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffman, W. M. Yen, in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–91.

May, P. S.

P. S. May, H. U. Güdel, J. Lumin. 46, 277 (1990).
[CrossRef]

Okhrimchuk, A. G.

N. I. Borodin, A. G. Okhrimchuk, A. V. Shestakov, in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 42–46.

Shestakov, A. V.

N. I. Borodin, A. G. Okhrimchuk, A. V. Shestakov, in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 42–46.

A. V. Shestakov, Russian Academy of Sciences, Moscow, Russia (personal communication, 1991).

Tissue, B. M.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffman, W. M. Yen, in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–91.

Yen, W. M.

K. R. Hoffman, U. Hömmerich, S. M. Jacobsen, W. M. Yen, J. Lumin. 52, 277 (1992).
[CrossRef]

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffman, W. M. Yen, in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–91.

J. Lumin. (2)

K. R. Hoffman, U. Hömmerich, S. M. Jacobsen, W. M. Yen, J. Lumin. 52, 277 (1992).
[CrossRef]

P. S. May, H. U. Güdel, J. Lumin. 46, 277 (1990).
[CrossRef]

Z. Kristallogr. (1)

S. Geller, Z. Kristallogr. 125, 1 (1967).
[CrossRef]

Other (3)

A. V. Shestakov, Russian Academy of Sciences, Moscow, Russia (personal communication, 1991).

N. I. Borodin, A. G. Okhrimchuk, A. V. Shestakov, in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 42–46.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffman, W. M. Yen, in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 87–91.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

NIR 10-K absorption spectra of Cr:LAG and Cr:YAG. The strong absorption bands centered at approximately 1000 nm are attributed to the 3B1(3A2) → 3A2(3T1) transition. For Cr:YAG, the zero-phonon lines of the metastable state are located at 1280 and 1275 nm. Sidebands of these zero-phonon lines based on enabling modes are located at 1239 and 1235 nm. Cr:LAG shows some weak structures at 1228.6 and 1224.5 nm that are likely the analogous enabling mode of the zero-phonon lines that are presumed from the emission data to be located at 1266 and 1262 nm.

Fig. 2
Fig. 2

10-K emission spectra of Cr:LAG and Cr:YAG. The peak at 1280 nm in the Cr:YAG spectrum is the actual zero-phonon line. The strong peak at 1330 nm is interpreted as 294-cm−1 enabling mode. The spectrum of Cr:LAG shows the same structure. The highest-energy emission peak is located at 1266 nm. The peak at 1318 nm is interpreted as 313-cm−1 enabling mode. With increasing temperature, a hot-band peak becomes visible at 1262 nm.

Fig. 3
Fig. 3

Room-temperature emission spectra of Cr:LAG and Cr:YAG. The spectra are almost identical, except that the maximum emission of Cr:LAG is shifted by approximately 10 nm to higher energies.

Fig. 4
Fig. 4

Temperature-dependent lifetime measurements of the NIR emission of Cr:LAG and Cr:YAG. The 10-K lifetime is 28.7 μs, and the room-temperature value is 4.3 μs. The change in lifetime from 10 K to 300 K is in Cr:LAG only 75% of the change in Cr:YAG.

Metrics