Abstract

Using a technique similar to chirped pulse compression, we have compressed the 50-mW cw output of a diode laser into pulses of greater than 500-mW peak power and less than 400-ps duration. By applying a small current modulation to the diode, we induced a small wavelength modulation in the vicinity of the 6s1/2-to-6p3/2 cesium resonance transition at 852 nm. Group-velocity dispersion on propagation through a cesium vapor cell then led to pulse compression. We developed a simple model to make predictions of output pulse shapes by using different modulation waveforms.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
    [Crossref]
  2. P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
    [Crossref]
  3. D. L. MacFarlane, J. A. Tatum, IEEE J. Quantum Electron. 28, 1320 (1992).
    [Crossref]
  4. N. Onodera, H. Ito, H. InabaIEEE J. Quantum Electron. QE-21, 568 (1985).
    [Crossref]
  5. A. Galvanauskas, A. Krotkus, J. A. Tellefsen, Electron. Lett. 27, 2394 (1991).
    [Crossref]
  6. R. Takahashi, H. Liu, M. Osinski, T. Kamiya, Appl. Phys. Lett. 55, 2377 (1989).
    [Crossref]
  7. J. K. Wigmore, D. R. Grischkowsky, IEEE J. Quantum Electron. QE-14, 310 (1978).
    [Crossref]

1992 (2)

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

D. L. MacFarlane, J. A. Tatum, IEEE J. Quantum Electron. 28, 1320 (1992).
[Crossref]

1991 (1)

A. Galvanauskas, A. Krotkus, J. A. Tellefsen, Electron. Lett. 27, 2394 (1991).
[Crossref]

1989 (1)

R. Takahashi, H. Liu, M. Osinski, T. Kamiya, Appl. Phys. Lett. 55, 2377 (1989).
[Crossref]

1986 (1)

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[Crossref]

1985 (1)

N. Onodera, H. Ito, H. InabaIEEE J. Quantum Electron. QE-21, 568 (1985).
[Crossref]

1978 (1)

J. K. Wigmore, D. R. Grischkowsky, IEEE J. Quantum Electron. QE-14, 310 (1978).
[Crossref]

Alphonse, G. A.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Andreadakis, N. C.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Delfyett, P. J.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Florez, L. T.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Galvanauskas, A.

A. Galvanauskas, A. Krotkus, J. A. Tellefsen, Electron. Lett. 27, 2394 (1991).
[Crossref]

Gmitter, T.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Grischkowsky, D. R.

J. K. Wigmore, D. R. Grischkowsky, IEEE J. Quantum Electron. QE-14, 310 (1978).
[Crossref]

Heritage, J. P.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Inaba, H.

N. Onodera, H. Ito, H. InabaIEEE J. Quantum Electron. QE-21, 568 (1985).
[Crossref]

Ito, H.

N. Onodera, H. Ito, H. InabaIEEE J. Quantum Electron. QE-21, 568 (1985).
[Crossref]

Kamiya, T.

R. Takahashi, H. Liu, M. Osinski, T. Kamiya, Appl. Phys. Lett. 55, 2377 (1989).
[Crossref]

Krotkus, A.

A. Galvanauskas, A. Krotkus, J. A. Tellefsen, Electron. Lett. 27, 2394 (1991).
[Crossref]

Liu, H.

R. Takahashi, H. Liu, M. Osinski, T. Kamiya, Appl. Phys. Lett. 55, 2377 (1989).
[Crossref]

MacFarlane, D. L.

D. L. MacFarlane, J. A. Tatum, IEEE J. Quantum Electron. 28, 1320 (1992).
[Crossref]

Onodera, N.

N. Onodera, H. Ito, H. InabaIEEE J. Quantum Electron. QE-21, 568 (1985).
[Crossref]

Osinski, M.

R. Takahashi, H. Liu, M. Osinski, T. Kamiya, Appl. Phys. Lett. 55, 2377 (1989).
[Crossref]

Silberberg, Y.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[Crossref]

Smith, P. W.

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[Crossref]

Stoffel, N.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

Takahashi, R.

R. Takahashi, H. Liu, M. Osinski, T. Kamiya, Appl. Phys. Lett. 55, 2377 (1989).
[Crossref]

Tatum, J. A.

D. L. MacFarlane, J. A. Tatum, IEEE J. Quantum Electron. 28, 1320 (1992).
[Crossref]

Tellefsen, J. A.

A. Galvanauskas, A. Krotkus, J. A. Tellefsen, Electron. Lett. 27, 2394 (1991).
[Crossref]

Wigmore, J. K.

J. K. Wigmore, D. R. Grischkowsky, IEEE J. Quantum Electron. QE-14, 310 (1978).
[Crossref]

Appl. Phys. Lett. (1)

R. Takahashi, H. Liu, M. Osinski, T. Kamiya, Appl. Phys. Lett. 55, 2377 (1989).
[Crossref]

Electron. Lett. (1)

A. Galvanauskas, A. Krotkus, J. A. Tellefsen, Electron. Lett. 27, 2394 (1991).
[Crossref]

IEEE J. Quantum Electron. (5)

J. K. Wigmore, D. R. Grischkowsky, IEEE J. Quantum Electron. QE-14, 310 (1978).
[Crossref]

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[Crossref]

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andreadakis, Y. Silberberg, J. P. Heritage, G. A. Alphonse, IEEE J. Quantum Electron. 28, 2203 (1992).
[Crossref]

D. L. MacFarlane, J. A. Tatum, IEEE J. Quantum Electron. 28, 1320 (1992).
[Crossref]

N. Onodera, H. Ito, H. InabaIEEE J. Quantum Electron. QE-21, 568 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cesium-vapor cell transmission, group velocity, and cell transit time as a function of frequency offset from the absorption line center. The cesium cell has a path length of 2.2 cm and is at a temperature of 115 °C.

Fig. 2
Fig. 2

Predictions of pulse compression. Sinusoidal, ramped, and best-form optical frequency modulations are shown at the left, and the corresponding predicted diode-laser output powers as a function of time are shown at the right.

Fig. 3
Fig. 3

Block diagram of the experimental setup. The reference diode laser at the bottom is frequency ramped to give an absorption calibration signal and a heterodyne signal. PD’s, photodiodes.

Fig. 4
Fig. 4

Pulse train generation with sinusoidal frequency modulation at 100 MHz. Top: Information on diode-laser modulation frequency amplitude δν (2.0 GHz) and laser frequency offset Δ (−3.6 GHz) with respect to the cesium hyperfine doublet shown in the vapor cell transmission curve. Bottom: Input and output laser powers as a function of time. The output power (after the cesium-vapor cell) shows a peak four times the average input power, with a FWHM duration of 400 ps.

Fig. 5
Fig. 5

Single-sweep pulse peaking with a ramped frequency modulation showing a 10-fold increase in peaking. The laser is swept through and away from the absorption line at a rate of ~0.1 GHz/ns.

Metrics