Abstract

Results of a study on the use of synthesized light sources in white-light interferometry are presented. The optimum wavelength combination with a pair of multimode laser diodes used to generate a synthetic wavelength source was simulated theoretically and verified experimentally. Using the best wavelength combination, we found that the lowest signal-to-noise ratio required by the system was 18.1 dB in theory and 22.1 dB from experiment. The relationships between the wavelengths of the two diodes used, their coherence lengths, and the signal-to-noise ratio required by the system are shown and discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Ning, B. T. Meggitt, K. T. V. Grattan, A. W. Palmer, Appl. Opt. 28, 3656 (1989).
    [Crossref]
  2. A. Koch, R. Ulrich, Sensors Actuators A 25–27, 201 (1991).
  3. Y. J. Rao, Y. N. Ning, D. A. Jackson, Opt. Lett. 18, 462 (1993).
    [Crossref] [PubMed]
  4. S. Chen, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, Electron. Lett. 29, 334 (1993).
    [Crossref]
  5. S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, Appl. Opt. 31, 6003 (1992).
    [Crossref] [PubMed]

1993 (2)

Y. J. Rao, Y. N. Ning, D. A. Jackson, Opt. Lett. 18, 462 (1993).
[Crossref] [PubMed]

S. Chen, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, Electron. Lett. 29, 334 (1993).
[Crossref]

1992 (1)

1991 (1)

A. Koch, R. Ulrich, Sensors Actuators A 25–27, 201 (1991).

1989 (1)

Y. N. Ning, B. T. Meggitt, K. T. V. Grattan, A. W. Palmer, Appl. Opt. 28, 3656 (1989).
[Crossref]

Chen, S.

S. Chen, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, Electron. Lett. 29, 334 (1993).
[Crossref]

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, Appl. Opt. 31, 6003 (1992).
[Crossref] [PubMed]

Grattan, K. T. V.

S. Chen, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, Electron. Lett. 29, 334 (1993).
[Crossref]

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, Appl. Opt. 31, 6003 (1992).
[Crossref] [PubMed]

Y. N. Ning, B. T. Meggitt, K. T. V. Grattan, A. W. Palmer, Appl. Opt. 28, 3656 (1989).
[Crossref]

Jackson, D. A.

Koch, A.

A. Koch, R. Ulrich, Sensors Actuators A 25–27, 201 (1991).

Meggitt, B. T.

S. Chen, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, Electron. Lett. 29, 334 (1993).
[Crossref]

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, Appl. Opt. 31, 6003 (1992).
[Crossref] [PubMed]

Y. N. Ning, B. T. Meggitt, K. T. V. Grattan, A. W. Palmer, Appl. Opt. 28, 3656 (1989).
[Crossref]

Ning, Y. N.

Y. J. Rao, Y. N. Ning, D. A. Jackson, Opt. Lett. 18, 462 (1993).
[Crossref] [PubMed]

Y. N. Ning, B. T. Meggitt, K. T. V. Grattan, A. W. Palmer, Appl. Opt. 28, 3656 (1989).
[Crossref]

Palmer, A. W.

S. Chen, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, Electron. Lett. 29, 334 (1993).
[Crossref]

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, Appl. Opt. 31, 6003 (1992).
[Crossref] [PubMed]

Y. N. Ning, B. T. Meggitt, K. T. V. Grattan, A. W. Palmer, Appl. Opt. 28, 3656 (1989).
[Crossref]

Rao, Y. J.

Ulrich, R.

A. Koch, R. Ulrich, Sensors Actuators A 25–27, 201 (1991).

Appl. Opt. (2)

Y. N. Ning, B. T. Meggitt, K. T. V. Grattan, A. W. Palmer, Appl. Opt. 28, 3656 (1989).
[Crossref]

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, Appl. Opt. 31, 6003 (1992).
[Crossref] [PubMed]

Electron. Lett. (1)

S. Chen, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, Electron. Lett. 29, 334 (1993).
[Crossref]

Opt. Lett. (1)

Sensors Actuators A (1)

A. Koch, R. Ulrich, Sensors Actuators A 25–27, 201 (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Theoretically simulated output fringe patterns from a white-light interferometer operated with one MLD (dashed curve) and a synthesized light source consisting of two MLD’s (solid curve). Lcs, coherence length of the synthesized source; Lc, coherence length of a MLD.

Fig. 2
Fig. 2

Simulated result showing that the peak–peak values of fringes 1, 0 and 0, 1 vary as a function of the wavelength difference between the two MLD’s, Δλopt (λ1 = 630 nm).

Fig. 3
Fig. 3

Wavelength difference, Δλopt, variation as a function of the wavelength of the first MLD under the condition of the optimum wavelength combination. From top to bottom, Lc is 20, 40, 60, and 80 μm.

Fig. 4
Fig. 4

Results showing that under the condition of the optimum wavelength combination the lowest SNR required is reduced as the coherence length of the MLD’s is reduced. From top to bottom, Lc is 40 (one MLD), 80, 60, 40, and 20 μm.

Fig. 5
Fig. 5

Schematic of the experimental arrangement. PZT, piezoelectric transducer.

Fig. 6
Fig. 6

Recorded fringe beat patterns generated by two MLD’s with wavelengths of (a) 635.7 and 670 nm, (b) 635.7 and 750 nm, and (c) 635.7 and 786 nm. Vertical units are arbitrary.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I output = I 1 exp [ ( 2 Δ L / L c 1 ) 2 ] cos ( 2 π Δ L / λ 1 ) + I 2 exp [ ( 2 Δ L / L c 2 ) 2 ] cos ( 2 π Δ L / λ 2 ) ,

Metrics