Abstract

We have analyzed the cross-talk noise as affected by the wavelength spread that is due to the spectral width of the light source in a wavelength-multiplexed reflection-type photorefractive fiber hologram. The spectral bandwidth of each multiplexed channel limited by the cross-talk noise is discussed. The signal-to-noise (cross-talk) ratio is analyzed, whereby we have shown that this ratio is sensitive to the separation between adjacent multiplexed channels and to the spectral width of the light source. The cross-talk-limited storage capacity for practical photorefractive fibers is evaluated.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Van Heerden, Appl. Opt. 2, 393 (1963).
    [Crossref]
  2. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  3. F. Mok, M. C Tackitt, H. M. Stoll, Opt. Lett. 16, 605 (1991).
    [Crossref] [PubMed]
  4. J. J. Amodei, D. L. Staebler, RCA Rev. 33, 71 (1972).
  5. S. Wu, Q. Song, A. Mayers, D. Gregory, F. T. S. Yu, Appl. Opt. 29, 1118 (1990).
    [Crossref] [PubMed]
  6. F. T. S. Yu, S. Jutamulia, Optical Signal Processing, Computing and Neural Networks (Wiley-Interscience, New York, 1992), Chap. 7, pp. 249–286.
  7. G. A. Rakuljic, V. Leyva, A. Yariv, Opt. Lett. 17, 1471 (1992).
    [Crossref] [PubMed]
  8. B. Catanzaro, J. Ma, Y. Fainman, S. H. Lee, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT5.
  9. K. Bløtekjaer, Appl. Opt. 18, 57 (1971).
    [Crossref]
  10. E. G. Ramberg, RCA Rev. 33, 5 (1972).
  11. K. Wagner, D. Psaltis, Appl. Opt. 26, 5061 (1987).
    [Crossref] [PubMed]
  12. C. Gu, J. Hong, J. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1978 (1992).
    [Crossref]
  13. C. Gu, J. Hong, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT2.
  14. J. H. Hong, P. Yeh, D. Psaltis, D. Brady, Opt. Lett. 15, 344 (1990).
    [Crossref] [PubMed]
  15. F. Zhao, H. Zhou, F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,”Opt. Commun. (to be published).
  16. F. Mok, Opt. Lett. 18, 915 (1993).
    [Crossref] [PubMed]

1993 (1)

1992 (2)

1991 (1)

1990 (2)

1987 (1)

1972 (2)

E. G. Ramberg, RCA Rev. 33, 5 (1972).

J. J. Amodei, D. L. Staebler, RCA Rev. 33, 71 (1972).

1971 (1)

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

1963 (1)

Amodei, J. J.

J. J. Amodei, D. L. Staebler, RCA Rev. 33, 71 (1972).

Bløtekjaer, K.

Brady, D.

Catanzaro, B.

B. Catanzaro, J. Ma, Y. Fainman, S. H. Lee, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT5.

Fainman, Y.

B. Catanzaro, J. Ma, Y. Fainman, S. H. Lee, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT5.

Gregory, D.

Gu, C.

C. Gu, J. Hong, J. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1978 (1992).
[Crossref]

C. Gu, J. Hong, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT2.

Hong, J.

C. Gu, J. Hong, J. McMichael, R. Saxena, F. Mok, J. Opt. Soc. Am. A 9, 1978 (1992).
[Crossref]

C. Gu, J. Hong, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT2.

Hong, J. H.

Jutamulia, S.

F. T. S. Yu, S. Jutamulia, Optical Signal Processing, Computing and Neural Networks (Wiley-Interscience, New York, 1992), Chap. 7, pp. 249–286.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Lee, S. H.

B. Catanzaro, J. Ma, Y. Fainman, S. H. Lee, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT5.

Leyva, V.

Ma, J.

B. Catanzaro, J. Ma, Y. Fainman, S. H. Lee, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT5.

Mayers, A.

McMichael, J.

Mok, F.

Psaltis, D.

Rakuljic, G. A.

Ramberg, E. G.

E. G. Ramberg, RCA Rev. 33, 5 (1972).

Saxena, R.

Song, Q.

Staebler, D. L.

J. J. Amodei, D. L. Staebler, RCA Rev. 33, 71 (1972).

Stoll, H. M.

Tackitt, M. C

Van Heerden, P. J.

Wagner, K.

Wu, S.

Yariv, A.

Yeh, P.

Yu, F. T. S.

S. Wu, Q. Song, A. Mayers, D. Gregory, F. T. S. Yu, Appl. Opt. 29, 1118 (1990).
[Crossref] [PubMed]

F. T. S. Yu, S. Jutamulia, Optical Signal Processing, Computing and Neural Networks (Wiley-Interscience, New York, 1992), Chap. 7, pp. 249–286.

F. Zhao, H. Zhou, F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,”Opt. Commun. (to be published).

Zhao, F.

F. Zhao, H. Zhou, F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,”Opt. Commun. (to be published).

Zhou, H.

F. Zhao, H. Zhou, F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,”Opt. Commun. (to be published).

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Opt. Soc. Am. A (1)

Opt. Lett. (4)

RCA Rev. (2)

J. J. Amodei, D. L. Staebler, RCA Rev. 33, 71 (1972).

E. G. Ramberg, RCA Rev. 33, 5 (1972).

Other (4)

C. Gu, J. Hong, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT2.

F. Zhao, H. Zhou, F. T. S. Yu, “Wavelength-multiplexed holographic storage by using the minimum wavelength channel separation in a photorefractive crystal fiber,”Opt. Commun. (to be published).

B. Catanzaro, J. Ma, Y. Fainman, S. H. Lee, in Annual Meeting, Vol. 23 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), paper WT5.

F. T. S. Yu, S. Jutamulia, Optical Signal Processing, Computing and Neural Networks (Wiley-Interscience, New York, 1992), Chap. 7, pp. 249–286.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wavelength-multiplexed reflection-type fiber holographic construction.

Fig. 2
Fig. 2

Diffraction efficiency η as a function of wavelength mismatch Δλ. Solid curve, ηpeak = 0.2% (n1 = 2 × 10−6, λ0 = 670 nm, L = 5 mm); dotted curve, ηpeak = 2% (n1 = 2 × 10−6, λ0 = 670 nm, L = 20 mm).

Fig. 3
Fig. 3

Distribution of SNR CT ( j ) with respect to the jth. multiplexed channel.

Fig. 4
Fig. 4

SNR CT ( 0 ) ( j = 0 ) as a function of the total number of multiplexed channels.

Fig. 5
Fig. 5

SNR CT ( 0 ) ( j = 0 ) as a function of the linewidth Δλl of the light source for different channels separations.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = [ 1 + 1 ξ 2 / ν 2 sinh 2 ( ν 2 ξ 2 ) 1 / 2 ] 1 ,
ξ = 2 π n L Δ λ λ 0 ( λ 0 + 2 Δ λ ) , ν = π n 1 L ( λ 0 + Δ λ ) ( 1 + 2 Δ λ / λ 0 ) 1 / 2
η peak = η ( Δ λ = 0 ) = tanh 2 ( π n 1 L / λ 0 ) ,
Δ λ min = λ 0 2 2 n L [ 1 + ( n 1 L / λ 0 ) 2 ] 1 / 2 .
Δ λ min λ 0 2 2 n L .
Δ λ min = Δ λ min + Δ λ l .
SNR CT ( j ) = rect ( Δ λ Δ λ l ) η d ( Δ λ ) m = ( M j ) m j M + j rect ( Δ λ m δ λ Δ λ l ) η d ( Δ λ ) ,

Metrics