Abstract

We report on spectra obtained by measuring the laser intensity noise after a broad-bandwidth diode-laser beam passes through a rubidium vapor cell. The atomic resonance converts laser frequency fluctuations into intensity fluctuations. We compare our experimental spectra with numerically calculated spectra based on a phase-diffusion model of the laser field and find good agreement.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hollberg, in Applied Laser Spectroscopy, NATO ASI series, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), p. 117.
    [Crossref]
  2. C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
    [Crossref]
  3. M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
    [Crossref] [PubMed]
  4. T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
    [Crossref] [PubMed]
  5. K. P. Dinse, M. P. Winters, J. L. Hall, J. Opt. Soc. Am. B 5, 1825 (1988).
    [Crossref]
  6. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Oritz, Appl. Phys. B 32, 145 (1983).
    [Crossref]
  7. S. N. Dixit, P. Zoller, P. Lambropoulos, Phys. Rev. A 21, 1289 (1980); A. T. Georges, Phys. Rev. A 21, 2034 (1980).
    [Crossref]
  8. J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,”Opt. Commun. (to be published).
  9. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
    [Crossref] [PubMed]

1991 (2)

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[Crossref] [PubMed]

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[Crossref]

1990 (1)

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

1988 (1)

1987 (1)

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

1980 (1)

S. N. Dixit, P. Zoller, P. Lambropoulos, Phys. Rev. A 21, 1289 (1980); A. T. Georges, Phys. Rev. A 21, 2034 (1980).
[Crossref]

Anderson, M. H.

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Campbell, N. S.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,”Opt. Commun. (to be published).

Cooper, J.

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

Dahmani, B.

Dinse, K. P.

Dixit, S. N.

S. N. Dixit, P. Zoller, P. Lambropoulos, Phys. Rev. A 21, 1289 (1980); A. T. Georges, Phys. Rev. A 21, 2034 (1980).
[Crossref]

Drullinger, R.

Elliott, D. S.

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

Grande, C. M.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,”Opt. Commun. (to be published).

Hall, J. L.

Hollberg, L.

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[Crossref]

B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
[Crossref] [PubMed]

L. Hollberg, in Applied Laser Spectroscopy, NATO ASI series, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), p. 117.
[Crossref]

Jones, R. D.

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

Knorpp, R. P.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,”Opt. Commun. (to be published).

Lambropoulos, P.

S. N. Dixit, P. Zoller, P. Lambropoulos, Phys. Rev. A 21, 1289 (1980); A. T. Georges, Phys. Rev. A 21, 2034 (1980).
[Crossref]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Maki, J. J.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,”Opt. Commun. (to be published).

McIntyre, D. H.

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,”Opt. Commun. (to be published).

Mitsui, T.

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[Crossref] [PubMed]

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

Ritsch, H.

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

Smith, S. J.

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

Tanaka, U.

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[Crossref] [PubMed]

Wieman, C. E.

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[Crossref]

Winters, M. P.

Yabuzaki, T.

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[Crossref] [PubMed]

Zoller, P.

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

S. N. Dixit, P. Zoller, P. Lambropoulos, Phys. Rev. A 21, 1289 (1980); A. T. Georges, Phys. Rev. A 21, 2034 (1980).
[Crossref]

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Oritz, Appl. Phys. B 32, 145 (1983).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. A (1)

S. N. Dixit, P. Zoller, P. Lambropoulos, Phys. Rev. A 21, 1289 (1980); A. T. Georges, Phys. Rev. A 21, 2034 (1980).
[Crossref]

Phys. Rev. Lett. (2)

M. H. Anderson, R. D. Jones, J. Cooper, S. J. Smith, D. S. Elliott, H. Ritsch, P. Zoller, Phys. Rev. Lett. 64, 1346 (1990).
[Crossref] [PubMed]

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[Crossref]

Other (2)

L. Hollberg, in Applied Laser Spectroscopy, NATO ASI series, W. Demtröder, M. Inguscio, eds. (Plenum, New York, 1990), p. 117.
[Crossref]

J. J. Maki, N. S. Campbell, C. M. Grande, R. P. Knorpp, D. H. McIntyre, “Stabilized diode-laser system with grating feedback and frequency-offset locking,”Opt. Commun. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Laser intensity noise versus detuning (lower trace) and reference absorption spectrum (upper trace) of the rubidium D2 resonance lines. The middle trace shows a theoretical noise spectrum calculated by use of the experimental parameters. Each resonance is labeled with the appropriate cycling transition. The spectrum-analyzer frequency was 50 MHz for the noise spectrum.

Fig. 2
Fig. 2

Peak height (circles), width (squares), and center (triangles) as a function of spectrum-analyzer frequency. The solid curves are the theoretical predictions for the respective parameters.

Fig. 3
Fig. 3

Doppler-free spectra of the F = 2 to F′ = 1, 2, 3 hyperfine transitions of the D2 line of 87Rb. The lower trace is a standard saturated-absorption spectrum showing the F = 2 to F′ = 3 transition (at zero detuning) and two crossover resonances. The upper trace is the probe intensity noise measured with the spectrum analyzer set to 25 MHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E i ( t ) α γ L × { t E i ( t ) exp [ ( i Δ + γ ) ( t t ) ] d t } v ,
I D H ( t ) = α γ L Re ( E i * ( t ) × { t E i ( t ) exp [ ( i Δ + γ ) ( t t ) ] d t } v ) ,
I S ( ω ) = Re 0 exp ( i ω τ ) I D H ( t ) I D H ( t + τ ) d τ

Metrics