Abstract

We propose and demonstrate optical logic operations using polarization encoding and wave mixing in photorefractive crystals. In our approach two orthogonal polarization states of light beams are used to represent respective logic values of 1 and 0. All 16 two-input logic operations can be easily achieved by use of the recording and readout of photoinduced volume gratings in photorefractive crystals. An optical full adder is also proposed and demonstrated.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. O’Meara, D. M. Pepper, J. O. White, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 14, p. 562.
  2. A. W. Lohmann, Appl. Opt. 25, 1594 (1986).
    [CrossRef] [PubMed]
  3. A. W. Lohmann, J. Weight, Appl. Opt. 26, 131 (1987).
    [CrossRef] [PubMed]
  4. G. R. Kumar, B. P. Singh, K. D. Rao, K. K. Sharma, Opt. Lett. 15, 245 (1990).
    [CrossRef] [PubMed]
  5. See, for example, P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chaps. 3 and 4.
  6. Y. Fainman, C. C. Guest, S. H. Lee, Appl. Opt. 25, 1598 (1986).
    [CrossRef] [PubMed]
  7. P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).
  8. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6, p. 187.
  9. P. Yeh, Appl. Opt. 26, 602 (1987).
    [CrossRef] [PubMed]

1990

1989

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

1987

1986

Beckwith, P.

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

Chang, T.

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

Chiou, A. E.

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

Fainman, Y.

Guest, C. C.

Hong, J.

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

Khoshnevisan, M.

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

Kumar, G. R.

Lee, S. H.

Lohmann, A. W.

O’Meara, T. R.

T. R. O’Meara, D. M. Pepper, J. O. White, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 14, p. 562.

Pepper, D. M.

T. R. O’Meara, D. M. Pepper, J. O. White, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 14, p. 562.

Rao, K. D.

Sharma, K. K.

Singh, B. P.

Weight, J.

White, J. O.

T. R. O’Meara, D. M. Pepper, J. O. White, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 14, p. 562.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6, p. 187.

Yeh, P.

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

P. Yeh, Appl. Opt. 26, 602 (1987).
[CrossRef] [PubMed]

See, for example, P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chaps. 3 and 4.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6, p. 187.

Appl. Opt.

Opt. Eng.

P. Yeh, A. E. Chiou, J. Hong, P. Beckwith, T. Chang, M. Khoshnevisan, Opt. Eng. 28, 328 (1989).

Opt. Lett.

Other

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 6, p. 187.

T. R. O’Meara, D. M. Pepper, J. O. White, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), Chap. 14, p. 562.

See, for example, P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chaps. 3 and 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawings of experimental setup for (a) a XNOR gate and (b) a NAND gate. M1, M2, mirrors; BS’s, beam splitters; a1’s, write beams, (a) Read beams c1, c2, c3, and c4 read gratings formed by input combinations (1, 1), (0, 0), (1, 0), and (0, 1), respectively, (b) Read beams d1, d2, d3, and d4 read gratings formed by input combinations (1, 1), (0, 0), (1, 0), and (0, 1), respectively.

Fig. 2
Fig. 2

Experimental results of two-input logic gates obtained with setups shown in Fig. 1. e Polarization stands for logic value 1; o polarization stands for logic value 0.

Fig. 3
Fig. 3

Schematic drawings of the experimental setup for an optical full adder with (a) sum and (b) carry.

Fig. 4
Fig. 4

Experimental results of the optical full adder obtained with setups shown in Fig. 3.

Fig. 5
Fig. 5

Grating formation inside the crystal in K-space representation. kA and kB are wave vectors for input beams A and B in air, respectively. k1o and k1e are the wave vectors of beam A inside the crystal for ordinary and extraordinary polarizations, respectively. Likewise, k2o and k2e are for beam B.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ K x = 2 π λ { [ n e ( θ e 2 ) cos ( θ e 2 ) n e ( θ e 1 ) cos ( θ e 1 ) ] { [ n o cos ( θ o 2 ) n o cos ( θ o 1 ) ] } ,
η = κ 2 κ 2 + ( Δ K x / 2 ) 2 sin 2 [ 1 + ( Δ K x / 2 κ ) κ L ] ,

Metrics