Abstract

Measured loss for the LP11 mode in a dual-mode fiber subjected to a uniform bend shows a strong dependence on the orientation of the mode-field pattern relative to the plane of the fiber bend. Wavelength and bend-radius dependence of the loss indicates that operation within ~40 nm of cutoff is feasible in dispersion compensators based on dual-mode fibers operated in the LP11 spatial mode near cutoff.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, Opt. Lett. 17, 985 (1992).
    [CrossRef] [PubMed]
  2. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, IEEE Photon. Technol. Lett. 5, 194 (1993).
    [CrossRef]
  3. D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,”IEEE J. Quantum Electron. (to be published).
  4. D. L. Philen, W. T. Anderson, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminow, eds. (Academic, New York, 1988), Chap. 8, pp. 350–353.
  5. J. N. Blake, B. Y. Kim, H. J. Shaw, Opt. Lett. 11, 177 (1986).
    [CrossRef] [PubMed]
  6. D. Marcuse, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminow, eds. (Academic, New York, 1988), Chap. 3, pp. 107–114.
  7. E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).
  8. D. Marcuse, D. Gloge, E. A. J. Marcatili, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), Chap. 3, pp. 62–65.
  9. D. Gloge, Appl. Opt. 10, 2252 (1971). Although the LP mode designations in this reference apply to circular fibers only, we make use of them here for our elliptical fiber since the mode patterns are nearly identical to those in the circular case, in spite of the fact that LP11 modes are no longer degenerate.
    [CrossRef] [PubMed]

1993 (1)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, IEEE Photon. Technol. Lett. 5, 194 (1993).
[CrossRef]

1992 (1)

1986 (1)

1971 (1)

1969 (1)

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

Anderson, W. T.

D. L. Philen, W. T. Anderson, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminow, eds. (Academic, New York, 1988), Chap. 8, pp. 350–353.

Blake, J. N.

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, IEEE Photon. Technol. Lett. 5, 194 (1993).
[CrossRef]

Gloge, D.

Kim, B. Y.

Marcatili, E. A. J.

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

D. Marcuse, D. Gloge, E. A. J. Marcatili, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), Chap. 3, pp. 62–65.

Marcuse, D.

D. Marcuse, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminow, eds. (Academic, New York, 1988), Chap. 3, pp. 107–114.

D. Marcuse, D. Gloge, E. A. J. Marcatili, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), Chap. 3, pp. 62–65.

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,”IEEE J. Quantum Electron. (to be published).

McCormick, A. R.

Miller, S. E.

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

Nelson, K. T.

Philen, D. L.

D. L. Philen, W. T. Anderson, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminow, eds. (Academic, New York, 1988), Chap. 8, pp. 350–353.

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, IEEE Photon. Technol. Lett. 5, 194 (1993).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, Opt. Lett. 17, 985 (1992).
[CrossRef] [PubMed]

Shaw, H. J.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, IEEE Photon. Technol. Lett. 5, 194 (1993).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, Opt. Lett. 17, 985 (1992).
[CrossRef] [PubMed]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, S. E. Miller, Bell Syst. Tech. J. 48, 2161 (1969).

IEEE Photon. Technol. Lett. (1)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, IEEE Photon. Technol. Lett. 5, 194 (1993).
[CrossRef]

Opt. Lett. (2)

Other (4)

D. Marcuse, D. Gloge, E. A. J. Marcatili, in Optical Fiber Telecommunications, S. E. Miller, A. G. Chynoweth, eds. (Academic, New York, 1979), Chap. 3, pp. 62–65.

D. Marcuse, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminow, eds. (Academic, New York, 1988), Chap. 3, pp. 107–114.

D. Marcuse, “Bend loss of slab and fiber modes computed with diffraction theory,”IEEE J. Quantum Electron. (to be published).

D. L. Philen, W. T. Anderson, in Optical Fiber Telecommunications II, S. E. Miller, I. P. Kaminow, eds. (Academic, New York, 1988), Chap. 8, pp. 350–353.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Next higher-order modes beyond the LP01 mode in an elliptical-core fiber.

Fig. 2
Fig. 2

Experimental setup: ECL, external-cavity laser; BPF, bandpass filter; PM, power meter; PC, polarization controller; MC, mode converter; Lock-in, lock-in amplifier.

Fig. 3
Fig. 3

Mode orientations for minimum and maximum bending loss. dc represents the hypothetical distance beyond which the mode phase front moves faster than the speed of light.

Fig. 4
Fig. 4

Wavelength dependence of bending loss for the LP11 mode near cutoff. The bend radius is 1.8 cm.

Fig. 5
Fig. 5

Bend-radius dependence of loss for the LP11 mode at 1545 nm.

Metrics