Abstract

Radiative renormalization has been used to deduce and describe electromagnetically induced transparency succinctly in four-wave mixing for both one and two strong fields. We find both additive and nested renormalization terms and give a prescription for obtaining renormalized expressions starting from perturbation theory solutions. The advantages of using a second strong field are also discussed.

© 1993 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of self-Kerr nonlinearity via electromagnetically induced transparency in a five-level cascade system: an analytical approach

Dinh Xuan Khoa, Le Van Doai, Doan Hoai Son, and Nguyen Huy Bang
J. Opt. Soc. Am. B 31(6) 1330-1334 (2014)

Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency

Gang Wang, Lin Cen, Yi Qu, Yan Xue, Jin-Hui Wu, and Jin-Yue Gao
Opt. Express 19(22) 21614-21619 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription