Abstract

Stimulated resonance Raman scattering (SRRS) of Rhodamine 6G (R6G) has been observed in microdroplets. By increasing the R6G concentration and input-laser intensity, SRRS from R6G can be distinguished from the R6G lasing. SRRS can be further amplified by the lasing gain when the SRRS is near the peak of the lasing gain profile. When the R6G Raman emission is at wavelengths longer than the lasing envelope, SRRS can still be enhanced by seeding from residual R6G fluorescence.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hilderbrant, M. Stockburger, J. Phys. Chem. 88, 5935 (1984).
    [CrossRef]
  2. W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
    [CrossRef]
  3. L. A. Carreira, L. P. Goss, in Advances in Laser Chemistry, A. H. Zewail, ed. (Springer-Verlag, New York, 1978), p. 277.
    [CrossRef]
  4. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
    [CrossRef]
  5. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984); H.-B. Lin, A. L. Houston, B. L. Justus, A. J. Campillo, Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 515.
  7. A. S. Kwok, R. K. Chang, in Quantum Electronics and Laser Science, Vol. 121993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper QTuC5.
  8. A. S. Kwok, R. K. Chang, Opt. Lett. 17, 1262 (1992).
    [CrossRef] [PubMed]

1992 (1)

1985 (1)

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

1984 (2)

1976 (1)

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

Carreira, L. A.

L. A. Carreira, L. P. Goss, in Advances in Laser Chemistry, A. H. Zewail, ed. (Springer-Verlag, New York, 1978), p. 277.
[CrossRef]

Chang, R. K.

A. S. Kwok, R. K. Chang, Opt. Lett. 17, 1262 (1992).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984); H.-B. Lin, A. L. Houston, B. L. Justus, A. J. Campillo, Opt. Lett. 11, 614 (1986).
[CrossRef] [PubMed]

A. S. Kwok, R. K. Chang, in Quantum Electronics and Laser Science, Vol. 121993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper QTuC5.

Goss, L. P.

L. A. Carreira, L. P. Goss, in Advances in Laser Chemistry, A. H. Zewail, ed. (Springer-Verlag, New York, 1978), p. 277.
[CrossRef]

Hilderbrant, P.

P. Hilderbrant, M. Stockburger, J. Phys. Chem. 88, 5935 (1984).
[CrossRef]

Hunsalz, G.

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

Kwok, A. S.

A. S. Kwok, R. K. Chang, Opt. Lett. 17, 1262 (1992).
[CrossRef] [PubMed]

A. S. Kwok, R. K. Chang, in Quantum Electronics and Laser Science, Vol. 121993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper QTuC5.

Lau, A.

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

Lenz, K.

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

Long, M. B.

Pfeiffer, M.

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

Qian, S.-X.

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 515.

Snow, J. B.

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 38 (1985).
[CrossRef]

Stockburger, M.

P. Hilderbrant, M. Stockburger, J. Phys. Chem. 88, 5935 (1984).
[CrossRef]

Tzeng, H.-M.

Wall, K. F.

Weigmann, H.-J.

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

Werncke, W.

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

J. Phys. Chem. (1)

P. Hilderbrant, M. Stockburger, J. Phys. Chem. 88, 5935 (1984).
[CrossRef]

Opt. Commun. (1)

W. Werncke, A. Lau, M. Pfeiffer, H.-J. Weigmann, G. Hunsalz, K. Lenz, Opt. Commun. 16, 128 (1976).
[CrossRef]

Opt. Lett. (3)

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 515.

A. S. Kwok, R. K. Chang, in Quantum Electronics and Laser Science, Vol. 121993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper QTuC5.

L. A. Carreira, L. P. Goss, in Advances in Laser Chemistry, A. H. Zewail, ed. (Springer-Verlag, New York, 1978), p. 277.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Inelastic emission spectra from 10−3 M R6G in ethanol droplets at three different Iin’s with λin = 550 nm. (a) Iin = 0.01 GW/cm2; the SRRS gain is low, and only lasing can be observed, (b) Iin = 0.1 GW/cm2; three peaks (labeled A–C) corresponding to SRRS of R6G can be identified, (c) Iin = 0.8 GW/cm2; two more SRRS peaks (labeled D and E) can be observed, and SRRS dominates lasing. Note the change in the scale for the detected intensity and the decrease in the lasing-to-SRRS-intensity ratio as Iin increases.

Fig. 2
Fig. 2

SRRS and lasing from 10−3 M R6G in ethanol droplets irradiated with Iin = 0.8 GW/cm2: (a) λin = 540 nm, (b) λin = 555 nm, (c) λin = 575 nm. Note the change in the scale for the detected intensity. The SRRS peaks of R6G are labeled (peaks A–E and the numbered peaks with units of cm−1). The SRS peak labeled e in (c) is from the 882-cm−1 Raman mode of ethanol. At each λin, SRRS is most intense for the R6G Raman modes that overlap spectrally with the peak of the lasing envelope.

Metrics