Abstract

We have developed efficient multipass Ti:sapphire amplifiers for femtosecond chirped-pulse amplification. With only two of these devices we get an amplification factor of 108, which corresponds to a peak power of ~0.5 TW after compression. We present a detailed analysis of such a system and its advantages in terms of its high quantum yield (0.3), flexibility, optical quality, and potential for tunability.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
    [CrossRef]
  2. J. Kmetec, J. Macklin, J. Young, Opt. Lett. 16, 1001 (1991).
    [CrossRef] [PubMed]
  3. J. Squier, F. Salin, G. Mourou, Opt. Lett. 16, 324 (1991).
    [CrossRef] [PubMed]
  4. W. White, J. Hunter, L. Van Woerkom, T. Ditmire, M. Perry, Opt. Lett. 17, 1067 (1992).
    [CrossRef] [PubMed]
  5. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, R. W. Falcone, Opt. Lett. 16, 1406 (1991).
    [CrossRef] [PubMed]
  6. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  7. J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
    [CrossRef]
  8. O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
    [CrossRef]
  9. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, Opt. Lett. 16, 144 (1991).
    [CrossRef] [PubMed]
  10. See A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  11. W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
    [CrossRef]
  12. A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
    [CrossRef]

1992 (1)

1991 (6)

1987 (1)

O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

1985 (1)

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

1982 (1)

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

1980 (1)

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Antonetti, A.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Blair, R. J.

Brun, A.

Ditmire, T.

Estable, F.

Falcone, R. W.

Fork, R.

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Georges, P.

Gordon, S.

Grangier, P.

Grillon, G.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Hamster, H.

Hunter, J.

Ippen, E.

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Joffre, M.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Kapteyn, H. C.

Kean, P. N.

Kmetec, J.

Le Blanc, C.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Likforman, J. P.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Macklin, J.

Martinez, O.

O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

Migus, A.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Mourou, G.

J. Squier, F. Salin, G. Mourou, Opt. Lett. 16, 324 (1991).
[CrossRef] [PubMed]

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Murray, J. E.

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Nathel, H.

Perry, M.

Poizat, J. P.

Salin, F.

Shank, C.

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Sibbett, W.

Siegman, A.

See A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Spence, D. E.

Squier, J.

Strickland, D.

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Sullivan, A.

Van Woerkom, L.

White, W.

Young, J.

Appl. Phys. Lett. (1)

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

J. Appl. Phys. (1)

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Opt. Commun. (1)

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Opt. Lett. (6)

Other (1)

See A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

General layout of the terawatt CPA Ti:sapphire system based on two multipass amplifiers. PC’s, Pockels cells.

Fig. 2
Fig. 2

Eight-pass amplifier. The input is focused by lens f1 in the Ti:sapphire crystal and imaged by lens f2 to the next pass. Propagation is in a vertical plane for the first four passes and then shifted to a parallel plane for the last four passes (see lower figure). The crystal is pumped from each side. The net gain is 106.

Fig. 3
Fig. 3

(a) Near-field beam profile measured just after the four-pass amplifier. The Gaussian correlation coefficient beam is 94% in the vertical plane and 92% in the horizontal plane. (b) Autocorrelation trace of a 60-mJ compressed pulse. The pulse width is 130 fs (FWHM) assuming a Gaussian pulse shape in the deconvolution.

Fig. 4
Fig. 4

Comparison of both amplifiers’ performances with a saturation model. The circles and squares show the calculated output for each pass, and the crosses are experimental points. In the four-pass amplifier, the last passes operate in the saturation regime to ensure a good energy extraction. Note that there are no free parameters.

Fig. 5
Fig. 5

Left: Spectra measured at the output of the stretcher, the eight-pass amplifier (1.2 mJ), and the four-pass amplifier (100 mJ) showing a small shift (1.1 nm) after the eight-pass amplifier and a higher one (2.4 nm) after the four-pass amplifier. Right: spectra calculated with the saturation model using a Gaussian input and the same parameters as in Fig. 4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J out ( p ) = J sat ln ( 1 + G 0 ( p ) { exp [ J in ( p ) J sat ] 1 } ) ,
I out ( t ) = G 0 exp ( J 0 / J sat ) 1 + G 0 [ exp ( J 0 / J sat ) 1 ] I 0 ( t ) ,

Metrics