Abstract

We have developed efficient multipass Ti:sapphire amplifiers for femtosecond chirped-pulse amplification. With only two of these devices we get an amplification factor of 108, which corresponds to a peak power of ~0.5 TW after compression. We present a detailed analysis of such a system and its advantages in terms of its high quantum yield (0.3), flexibility, optical quality, and potential for tunability.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
    [CrossRef]
  2. J. Kmetec, J. Macklin, J. Young, Opt. Lett. 16, 1001 (1991).
    [CrossRef] [PubMed]
  3. J. Squier, F. Salin, G. Mourou, Opt. Lett. 16, 324 (1991).
    [CrossRef] [PubMed]
  4. W. White, J. Hunter, L. Van Woerkom, T. Ditmire, M. Perry, Opt. Lett. 17, 1067 (1992).
    [CrossRef] [PubMed]
  5. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, R. W. Falcone, Opt. Lett. 16, 1406 (1991).
    [CrossRef] [PubMed]
  6. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  7. J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
    [CrossRef]
  8. O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
    [CrossRef]
  9. P. Georges, F. Estable, F. Salin, J. P. Poizat, P. Grangier, A. Brun, Opt. Lett. 16, 144 (1991).
    [CrossRef] [PubMed]
  10. See A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  11. W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
    [CrossRef]
  12. A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
    [CrossRef]

1992

1991

1987

O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

1985

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

1982

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

1980

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Antonetti, A.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Blair, R. J.

Brun, A.

Ditmire, T.

Estable, F.

Falcone, R. W.

Fork, R.

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Georges, P.

Gordon, S.

Grangier, P.

Grillon, G.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Hamster, H.

Hunter, J.

Ippen, E.

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Joffre, M.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Kapteyn, H. C.

Kean, P. N.

Kmetec, J.

Le Blanc, C.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Likforman, J. P.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Macklin, J.

Martinez, O.

O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

Migus, A.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Mourou, G.

J. Squier, F. Salin, G. Mourou, Opt. Lett. 16, 324 (1991).
[CrossRef] [PubMed]

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Murray, J. E.

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Nathel, H.

Perry, M.

Poizat, J. P.

Salin, F.

Shank, C.

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

Sibbett, W.

Siegman, A.

See A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Spence, D. E.

Squier, J.

Strickland, D.

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Sullivan, A.

Van Woerkom, L.

White, W.

Young, J.

Appl. Phys. Lett.

J. P. Likforman, G. Grillon, M. Joffre, C. Le Blanc, A. Migus, A. Antonetti, Appl. Phys. Lett. 58, 2061 (1991).
[CrossRef]

IEEE J. Quantum Electron.

O. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

A. Migus, C. Shank, E. Ippen, R. Fork, IEEE J. Quantum Electron. QE-18, 101 (1982).
[CrossRef]

J. Appl. Phys.

W. H. Lowdermilk, J. E. Murray, J. Appl. Phys. 51, 5 (1980), and references therein.
[CrossRef]

Opt. Commun.

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985); P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Opt. Lett.

Other

See A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

General layout of the terawatt CPA Ti:sapphire system based on two multipass amplifiers. PC’s, Pockels cells.

Fig. 2
Fig. 2

Eight-pass amplifier. The input is focused by lens f1 in the Ti:sapphire crystal and imaged by lens f2 to the next pass. Propagation is in a vertical plane for the first four passes and then shifted to a parallel plane for the last four passes (see lower figure). The crystal is pumped from each side. The net gain is 106.

Fig. 3
Fig. 3

(a) Near-field beam profile measured just after the four-pass amplifier. The Gaussian correlation coefficient beam is 94% in the vertical plane and 92% in the horizontal plane. (b) Autocorrelation trace of a 60-mJ compressed pulse. The pulse width is 130 fs (FWHM) assuming a Gaussian pulse shape in the deconvolution.

Fig. 4
Fig. 4

Comparison of both amplifiers’ performances with a saturation model. The circles and squares show the calculated output for each pass, and the crosses are experimental points. In the four-pass amplifier, the last passes operate in the saturation regime to ensure a good energy extraction. Note that there are no free parameters.

Fig. 5
Fig. 5

Left: Spectra measured at the output of the stretcher, the eight-pass amplifier (1.2 mJ), and the four-pass amplifier (100 mJ) showing a small shift (1.1 nm) after the eight-pass amplifier and a higher one (2.4 nm) after the four-pass amplifier. Right: spectra calculated with the saturation model using a Gaussian input and the same parameters as in Fig. 4.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

J out ( p ) = J sat ln ( 1 + G 0 ( p ) { exp [ J in ( p ) J sat ] 1 } ) ,
I out ( t ) = G 0 exp ( J 0 / J sat ) 1 + G 0 [ exp ( J 0 / J sat ) 1 ] I 0 ( t ) ,

Metrics