Abstract

An optically trapped prolate glass stylus is the force-sensing element of a novel scanning-force microscope. Stylus displacement is detected with the use of the forward scatter of the trapping laser beam. Radiation forces owing to the three-dimensional intensity distribution near the focus permit the stylus to be both positioned with fine control and oriented along the z (optic) axis. Details of 20-nm size appear in traces recorded with a crude stylus in a trap formed with 1064-nm radiation. The spring constant of the optical-force transducer is below 10−4 N/m, which is to be compared with ∼0.1 N/m for typical mechanical cantilevers used in atomic-force microscopy. This gentler technique should improve the sensitivity of scanning-force microscopy for the imaging of soft samples in aqueous media.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, T. Yamane, Nature (London) 330, 769 (1987).
    [CrossRef]
  3. A. Ashkin, K. Shutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
    [CrossRef]
  4. S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
    [CrossRef]
  5. W. Denk, W. W. Webb, Appl. Opt. 29, 2382 (1990).
    [CrossRef] [PubMed]
  6. G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    [CrossRef] [PubMed]
  7. A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 54, 2651.
  8. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
    [CrossRef]
  9. Y. Hiraoka, J. W. Sedat, D. A. Agard, Biophys. J. 57, 325 (1990).
    [CrossRef] [PubMed]
  10. S. C. Arney, N. C. MacDonald, J. Vac. Sci. Technol. B 6, 341 (1988).
    [CrossRef]

1991

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

1990

Y. Hiraoka, J. W. Sedat, D. A. Agard, Biophys. J. 57, 325 (1990).
[CrossRef] [PubMed]

W. Denk, W. W. Webb, Appl. Opt. 29, 2382 (1990).
[CrossRef] [PubMed]

1988

S. C. Arney, N. C. MacDonald, J. Vac. Sci. Technol. B 6, 341 (1988).
[CrossRef]

1986

Agard, D. A.

Y. Hiraoka, J. W. Sedat, D. A. Agard, Biophys. J. 57, 325 (1990).
[CrossRef] [PubMed]

Albrecht, T. R.

A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 54, 2651.

Arney, S. C.

S. C. Arney, N. C. MacDonald, J. Vac. Sci. Technol. B 6, 341 (1988).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

A. Ashkin, K. Shutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef]

A. Ashkin, J. M. Dziedzic, T. Yamane, Nature (London) 330, 769 (1987).
[CrossRef]

Binnig, G.

G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, S. M.

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef]

Chu, S.

Denk, W.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986).
[CrossRef] [PubMed]

A. Ashkin, K. Shutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef]

A. Ashkin, J. M. Dziedzic, T. Yamane, Nature (London) 330, 769 (1987).
[CrossRef]

Euteneuer, U.

A. Ashkin, K. Shutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef]

Gerber, Ch.

G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
[CrossRef] [PubMed]

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef]

Hansma, P. K.

A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 54, 2651.

Hiraoka, Y.

Y. Hiraoka, J. W. Sedat, D. A. Agard, Biophys. J. 57, 325 (1990).
[CrossRef] [PubMed]

Kitamura, N.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Koshioka, M.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

MacDonald, N. C.

S. C. Arney, N. C. MacDonald, J. Vac. Sci. Technol. B 6, 341 (1988).
[CrossRef]

Masuhara, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Misawa, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Quate, C. F.

G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
[CrossRef] [PubMed]

A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 54, 2651.

Sasaki, K.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Schliwa, M.

A. Ashkin, K. Shutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef]

Sedat, J. W.

Y. Hiraoka, J. W. Sedat, D. A. Agard, Biophys. J. 57, 325 (1990).
[CrossRef] [PubMed]

Shutze, K.

A. Ashkin, K. Shutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef]

Webb, W. W.

Weisenhorn, A. L.

A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 54, 2651.

Yamane, T.

A. Ashkin, J. M. Dziedzic, T. Yamane, Nature (London) 330, 769 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, C. F. Quate, Appl. Phys. Lett. 54, 2651.

Biophys. J.

Y. Hiraoka, J. W. Sedat, D. A. Agard, Biophys. J. 57, 325 (1990).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

J. Vac. Sci. Technol. B

S. C. Arney, N. C. MacDonald, J. Vac. Sci. Technol. B 6, 341 (1988).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
[CrossRef] [PubMed]

Other

A. Ashkin, J. M. Dziedzic, T. Yamane, Nature (London) 330, 769 (1987).
[CrossRef]

A. Ashkin, K. Shutze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature (London) 348, 346 (1990).
[CrossRef]

S. M. Block, L. S. B. Goldstein, B. J. Schnapp, Nature (London) 348, 348 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the scanning-force microscope. The Wollaston prisms are necessary to view only the trapped particles and the sample with wide-field differential-interference-contrast microscopy.

Fig. 2
Fig. 2

Power spectrum of spontaneous thermal position fluctuations of a trapped 2-μm sphere in water (top curve). There is a roll-off near 200 Hz, and a second roll-off may be discerned at a higher frequency. The instrumental noise floor (bottom curve) rises at the lowest frequencies because of beam-pointing instability. Above ∼100 Hz, the limit is due to laser intensity noise from the laser power supply.

Fig. 3
Fig. 3

Scans of 256 pixels per line along a photoresist poly(methyl methacrylate) surface with an optically trapped glass stylus. We minimize the contact force by adjusting the separation between sample surface and beam focus so as to hold the stylus near the equilibrium position of the trap. We note that the structure vanishes on the traces when the sample-to-tip force is reduced below this level. The successive traces are displaced by a small undefined drift along the y axis. The bottom trace was recorded with the stylus in the trap, but without scanning, in order to show the thermal noise limit, with amplitude ∼15 nm.

Fig. 4
Fig. 4

Scans of 512 pixels per line along another area of the photoresist surface. We maximized the contact force by moving the beam focus toward the sample surface until the stylus approached the axial threshold for escape (∼2 × 10−11 N). In this case, the sensitivity to lateral forces increased. The bottom trace was recorded with the stylus in the trap, but without scanning, in order to show the thermal noise limit.

Metrics