Abstract

A simple heterodyne spectroscopic technique that exploits the broad wings of the emission frequency profile of diode lasers is applied to the detection of atmospheric oxygen. The technique, in which we generate a radio-frequency heterodyne signal by mixing the electric fields of a diode laser and the laser-induced macroscopic polarization of an atomic or molecular ensemble, has potential applications in a number of areas, including remote sensing and monitoring of atmospheric constituents and pollutants.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
    [CrossRef] [PubMed]
  2. C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  3. For an example of a theoretical framework displaying this type of delay time, see M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.), pp. 198–203. We are indebted to J. Cooper for providing us with a detailed theory of heterodyne spectra resulting from time delays between the fields EL and ED described in the following paragraph. A detailed comparison of oxygen A-band experimental results with theory is in progress.
  4. R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1976).
    [CrossRef]
  5. H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
    [CrossRef]
  6. J. Cooper, Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colo. 80309 (personal communication, 1993).
  7. M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, Opt. Commun. 85, 355 (1991).
    [CrossRef]

1991 (3)

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[CrossRef] [PubMed]

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, Opt. Commun. 85, 355 (1991).
[CrossRef]

1976 (1)

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

1948 (1)

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

Babcock, H. D.

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

Berkeland, D.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, Opt. Commun. 85, 355 (1991).
[CrossRef]

Boshier, M. G.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, Opt. Commun. 85, 355 (1991).
[CrossRef]

Brewer, R. G.

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

Cooper, J.

J. Cooper, Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colo. 80309 (personal communication, 1993).

Genack, A. Z.

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

Herzberg, L.

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

Hinds, E. A.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, Opt. Commun. 85, 355 (1991).
[CrossRef]

Hollberg, L.

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Lamb, W. E.

For an example of a theoretical framework displaying this type of delay time, see M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.), pp. 198–203. We are indebted to J. Cooper for providing us with a detailed theory of heterodyne spectra resulting from time delays between the fields EL and ED described in the following paragraph. A detailed comparison of oxygen A-band experimental results with theory is in progress.

Mitsui, T.

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[CrossRef] [PubMed]

Sandoghdar, V.

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, Opt. Commun. 85, 355 (1991).
[CrossRef]

Sargent, M.

For an example of a theoretical framework displaying this type of delay time, see M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.), pp. 198–203. We are indebted to J. Cooper for providing us with a detailed theory of heterodyne spectra resulting from time delays between the fields EL and ED described in the following paragraph. A detailed comparison of oxygen A-band experimental results with theory is in progress.

Scully, M. O.

For an example of a theoretical framework displaying this type of delay time, see M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.), pp. 198–203. We are indebted to J. Cooper for providing us with a detailed theory of heterodyne spectra resulting from time delays between the fields EL and ED described in the following paragraph. A detailed comparison of oxygen A-band experimental results with theory is in progress.

Tanaka, U.

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[CrossRef] [PubMed]

Wieman, C. E.

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Yabuzaki, T.

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[CrossRef] [PubMed]

Astrophys. J. (1)

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

Opt. Commun. (1)

M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, Opt. Commun. 85, 355 (1991).
[CrossRef]

Phys. Rev. Lett. (2)

R. G. Brewer, A. Z. Genack, Phys. Rev. Lett. 36, 959 (1976).
[CrossRef]

T. Yabuzaki, T. Mitsui, U. Tanaka, Phys. Rev. Lett. 67, 2453 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Other (2)

For an example of a theoretical framework displaying this type of delay time, see M. Sargent, M. O. Scully, W. E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass.), pp. 198–203. We are indebted to J. Cooper for providing us with a detailed theory of heterodyne spectra resulting from time delays between the fields EL and ED described in the following paragraph. A detailed comparison of oxygen A-band experimental results with theory is in progress.

J. Cooper, Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colo. 80309 (personal communication, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement.

Fig. 2
Fig. 2

Radio-frequency spectrum analyzer heterodyne signals from the 760.33-nm oxygen transition. Trace (a) was obtained with the laser detuned by ∼200 MHz from resonance. Trace (b) was obtained with the laser detuned by ∼10 GHz. The top trace is the difference of traces (a) and (b).

Fig. 3
Fig. 3

Plot of the maximum radio-frequency heterodyne signal as a function of the separation between the diode laser and the photodiode for the 760.01-nm transition. For each experimental point there is an error of ∼10% in the signal height.

Metrics