Abstract

We report the operating characteristics of a Kerr-lens mode-locked Ti:sapphire laser as the intracavity dispersion is varied continuously from negative to positive values. These measurements include a delineation of the unstable region around zero dispersion that is predicted by a recent theoretical treatment of Kerr-lens mode locking. A detailed comparison with the theory is made.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Martinez, R. L. Fork, J. P. Gordon, Opt. Lett. 9, 156 (1984).
    [CrossRef] [PubMed]
  2. H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
    [CrossRef]
  3. F. Krausz, M. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
    [CrossRef]
  4. The effect of higher-order dispersion on stability has also been studied by T. Brabec, Ch. Spielmann, F. Krausz, Opt. Lett. 17, 748 (1992).
    [CrossRef] [PubMed]
  5. J. Goodberlet, J. Wang, J. G. Fujimoto, P. A. Schulz, Opt. Commun. 14, 1125 (1989).
  6. D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 14, 1125 (1989).
    [CrossRef]
  7. Dispersive resonances occurring at positive GVD and accompanying solitonlike pulses have been studied previously by P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993); H. A. Haus, J. D. Moores, L. E. Nelson, Opt. Lett. 18, 51 (1993).
    [CrossRef] [PubMed]
  8. W. H. Knox, Opt. Lett. 17, 514 (1992).
    [CrossRef] [PubMed]
  9. H. A. Haus, Opt. Commun. 97, 215 (1993).
    [CrossRef]

1993 (2)

1992 (3)

W. H. Knox, Opt. Lett. 17, 514 (1992).
[CrossRef] [PubMed]

The effect of higher-order dispersion on stability has also been studied by T. Brabec, Ch. Spielmann, F. Krausz, Opt. Lett. 17, 748 (1992).
[CrossRef] [PubMed]

F. Krausz, M. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

1991 (1)

1989 (2)

J. Goodberlet, J. Wang, J. G. Fujimoto, P. A. Schulz, Opt. Commun. 14, 1125 (1989).

D. E. Spence, P. N. Kean, W. Sibbett, Opt. Lett. 14, 1125 (1989).
[CrossRef]

1984 (1)

Brabec, T.

Curley, P. F.

Fermann, M.

F. Krausz, M. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

Fork, R. L.

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, E. P. Ippen, J. Opt. Soc. Am. B 8, 2068 (1991).
[CrossRef]

J. Goodberlet, J. Wang, J. G. Fujimoto, P. A. Schulz, Opt. Commun. 14, 1125 (1989).

Goodberlet, J.

J. Goodberlet, J. Wang, J. G. Fujimoto, P. A. Schulz, Opt. Commun. 14, 1125 (1989).

Gordon, J. P.

Haus, H. A.

Hofer, M.

F. Krausz, M. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

Ippen, E. P.

Kean, P. N.

Knox, W. H.

Krausz, F.

Martinez, O. E.

Ober, M. H.

F. Krausz, M. Fermann, T. Brabec, P. F. Curley, M. Hofer, M. H. Ober, Ch. Spielmann, E. Wintner, A. J. Schmidt, IEEE J. Quantum Electron. 28, 2097 (1992).
[CrossRef]

Schmidt, A. J.

Schulz, P. A.

J. Goodberlet, J. Wang, J. G. Fujimoto, P. A. Schulz, Opt. Commun. 14, 1125 (1989).

Sibbett, W.

Spence, D. E.

Spielmann, Ch.

Wang, J.

J. Goodberlet, J. Wang, J. G. Fujimoto, P. A. Schulz, Opt. Commun. 14, 1125 (1989).

Wintner, E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Lasing spectra for different values of intracavity dispersion (in units of femtoseconds squared). Autocorrelations corresponding to several values of dispersion are shown on the right.

Fig. 2
Fig. 2

(a) Measured autocorrelation and best-fit autocorrelation envelope for Dn = 8.3. From the fit, we infer τ = 1485 fs and β = −15.5. The calculated envelope has been displaced for clarity. (b) Solid curve, measured power spectrum; dashed curve, calculated power spectrum using the parameters determined from the autocorrelation.

Fig. 3
Fig. 3

Pulse duration τn as a function of dispersion Dn. The filled circles are the measured values that we determined by fitting autocorrelations. The curve is the theoretical prediction, assuming γ = 1 and δ = 3.

Fig. 4
Fig. 4

Autocorrelation for Dn = 0.6. The solid curve is the best-fit envelope, assuming a chirped Gaussian pulse shape.

Metrics