Abstract

Design of an expansion and recompression system for amplification of sub-20-fs optical pulses to multiterawatt peak powers is presented. The system allows one to eliminate spatial inhomogeneities and cubic and quartic phase errors that make existing designs unsuitable for use with pulses much shorter than 100 fs. We experimentally demonstrate >10,000 times expansion and recompression of ∼25-fs optical pulses.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Curley, C. Spielmann, T. Brabec, F. Krausz, E. Wintner, A. J. Schmidt, Opt. Lett. 18, 54 (1993).
    [CrossRef] [PubMed]
  2. B. Proctor, F. Wise, Opt. Lett. 17, 1295 (1992).
    [CrossRef] [PubMed]
  3. C. P. Huang, M. T. Asaki, S. Backus, H. Nathel, M. M. Murnane, H. C. Kapteyn, Opt. Lett. 17, 1289 (1992).
    [CrossRef] [PubMed]
  4. B. E. Lemoff, C. P. J. Barty, Opt. Lett. 17, 1367 (1992).
    [CrossRef] [PubMed]
  5. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985).
    [CrossRef]
  6. J. D. Kmetec, J. J. Macklin, J. F. Young, Opt. Lett. 16, 1001 (1991).
    [CrossRef] [PubMed]
  7. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, R. W. Falcone, Opt. Lett. 16, 1406 (1991).
    [CrossRef] [PubMed]
  8. W. E. White, J. R. Hunter, L. Van Woerkom, T. Ditmire, M. D. Perry, Opt. Lett. 17, 1067 (1992).
    [CrossRef] [PubMed]
  9. C. Le Blanc, G. Grillon, J.P. Chambaret, A. Migus, A. Antonetti, Opt. Lett. 18, 140 (1993).
    [CrossRef]
  10. E. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
    [CrossRef]
  11. E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
    [CrossRef]

1993

1992

1991

1987

E. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

1985

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

1969

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Antonetti, A.

Asaki, M. T.

Backus, S.

Barty, C. P. J.

Blair, R. J.

Brabec, T.

Chambaret, J.P.

Curley, P. F.

Ditmire, T.

Falcone, R. W.

Gordon, S.

Grillon, G.

Hamster, H.

Huang, C. P.

Hunter, J. R.

Kapteyn, H. C.

Kmetec, J. D.

Krausz, F.

Le Blanc, C.

Lemoff, B. E.

Macklin, J. J.

Martinez, E. E.

E. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
[CrossRef]

Migus, A.

Mourou, G.

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Murnane, M. M.

Nathel, H.

Perry, M. D.

Proctor, B.

Schmidt, A. J.

Spielmann, C.

Strickland, D.

D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Sullivan, A.

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454 (1969).
[CrossRef]

Van Woerkom, L.

White, W.

White, W. E.

Wintner, E.

Wise, F.

Young, J. F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the all-reflective pulse expander. The beam is vertically multiplexed four times, with vertical displacement occurring twice at the roof mirror and once at the horizontal image inverter.

Fig. 2
Fig. 2

Dispersive phase errors calculated from ray tracing. (a) Cubic phase error versus compressor grating incident angle, (b) quartic phase error versus BK7 path length.

Fig. 3
Fig. 3

Measured interferometric autocorrelations of (a) the input pulse to the expander, (b) the recompressed pulse with no material in the beam path, and (c) the recompressed pulse with 23 cm of SF10 and 3 cm of SF6 glass in the beam path. Superimposed on each is the envelope of the transform-limited interferometric autocorrelation calculated from the measure spectrum (inset).

Fig. 4
Fig. 4

Temporal profile of the expanded pulse. Widths shown correspond to FWHM (294 ps) and top-hat-equivalent width (378 ps).

Metrics