Abstract

Two-wave mixing at λ = 1.06 μm in the saturable gain of a flash-lamp-pumped Nd:YAG amplifier was investigated, both experimentally and theoretically, by development of a transient analysis. Despite the local response of the inverted medium, it is shown that energy redistribution can occur, thus leading to the depletion of a low-intensity signal beam. Finally we measured a diffraction efficiency of 20% of the transmission-gain grating by diffracting a probe beam at λ = 1.06 μm under the Bragg condition.

© 1993 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986), Chap. 6, pp. 159–192.
  2. P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
    [CrossRef]
  3. H. Rajbenbach, A. Deboulbé, J.-P. Huignard, Opt. Lett. 16, 1481 (1991).
    [CrossRef] [PubMed]
  4. S. Sternklar, S. Jackel, D. Chomsky, A. Zigler, Opt. Lett. 15, 616 (1990).
    [CrossRef] [PubMed]
  5. R. L. Abrams, R. C. Lind, Opt. Lett. 2, 94 (1978); R. L. Abrams, R. C. Lind, Opt. Lett. 3, 205 (1978).
    [CrossRef] [PubMed]
  6. M. T. Gruneisen, A. L. Gaeta, R. W. Boyd, J. Opt. Soc. Am. B 2, 1117 (1985).
    [CrossRef]
  7. A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
    [CrossRef]
  8. G. J. Crofts, R. P. M. Green, M. J. Damzen, Opt. Lett. 17, 920 (1992).
    [CrossRef] [PubMed]
  9. M. J. Damzen, R. P. M. Green, G. J. Crofts, Opt. Lett. 17, 1331 (1992).
    [CrossRef] [PubMed]
  10. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 123, 367.
  11. J. C. Diels, I. McMichael, H. Vanherzeele, IEEE J. Quantum Electron. QE-20, 630 (1984).
    [CrossRef]

1992 (2)

1991 (1)

1990 (1)

1989 (1)

P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
[CrossRef]

1985 (1)

1984 (1)

J. C. Diels, I. McMichael, H. Vanherzeele, IEEE J. Quantum Electron. QE-20, 630 (1984).
[CrossRef]

1979 (1)

A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
[CrossRef]

1978 (1)

Abrams, R. L.

Boyd, R. W.

Chomsky, D.

Crofts, G. J.

Damzen, M. J.

Deboulbé, A.

Diels, J. C.

J. C. Diels, I. McMichael, H. Vanherzeele, IEEE J. Quantum Electron. QE-20, 630 (1984).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986), Chap. 6, pp. 159–192.

Gaeta, A. L.

Green, R. P. M.

Gruneisen, M. T.

Günter, P.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986), Chap. 6, pp. 159–192.

Huignard, J.-P.

Jackel, S.

Lind, R. C.

McMichael, I.

J. C. Diels, I. McMichael, H. Vanherzeele, IEEE J. Quantum Electron. QE-20, 630 (1984).
[CrossRef]

Pohl, D. W.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986), Chap. 6, pp. 159–192.

Rajbenbach, H.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 123, 367.

Sternklar, S.

Tomita, A.

A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
[CrossRef]

Vanherzeele, H.

J. C. Diels, I. McMichael, H. Vanherzeele, IEEE J. Quantum Electron. QE-20, 630 (1984).
[CrossRef]

Yeh, P.

P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
[CrossRef]

Zigler, A.

Appl. Phys. Lett. (1)

A. Tomita, Appl. Phys. Lett. 34, 463 (1979).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Yeh, IEEE J. Quantum Electron. 25, 484 (1989).
[CrossRef]

J. C. Diels, I. McMichael, H. Vanherzeele, IEEE J. Quantum Electron. QE-20, 630 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (5)

Other (2)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 123, 367.

H. J. Eichler, P. Günter, D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, Berlin, 1986), Chap. 6, pp. 159–192.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TWM process showing the signal beam (A2) and the pump beam (A1) interacting in the flash-lamp-pumped Nd:YAG amplifier.

Fig. 2
Fig. 2

Output-beam ratio 〈β(L)〉 as a function of the input-pump beam energy fluence (intensity) normalized to the saturation fluence (intensity) for various values of the input-beam ratio β(0) and for α0L = 3.3. Solid curves, transient analysis; dashed curve, steady-state analysis.

Fig. 3
Fig. 3

Redistribution of the output fluences 〈R1〉 and 〈R2〉 for the pump and signal beams, respectively, as a function of the input-pump beam energy fluence normalized to the saturation fluence and for various values of the input-beam ratio β(0). Plot gives experimental points and theoretical curves (α0L = 3.3).

Fig. 4
Fig. 4

Test object on the low-intensity signal beam imaged through the amplifier: (a) when there is no grating, (b) image depletion in the presence of the gain grating. β(0) = 20 and U1(0) = 0.12 J/cm2.

Fig. 5
Fig. 5

Transmission-gain grating diffraction efficiency in the transient regime as a function of the input energy fluence of the pump beam, normalized to the saturation fluence, for various values of α0L.

Fig. 6
Fig. 6

Transmission-grating diffraction efficiency as a function of the input energy fluence of the probe beam normalized to the saturation fluence. Plot gives experimental points and theoretical curve (α0L = 3.3).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

χ ( I ) = ( i α 0 / k ) exp ( I t / U sat ) ,
d A 1 d z = α eff 2 [ I 0 ( U M ) A 1 I 1 ( U M ) A 2 ] ,
d A 2 d z = α eff 2 [ I 0 ( U M ) A 2 I 1 ( U M ) A 1 ] ,
d A 1 d z = α 0 2 exp [ j = 1 2 | A j ( z ) | 2 t / U sat ] A 1 ,
d A 2 d z = α 0 2 exp [ j = 1 2 | A j ( z ) | 2 t / U sat ] A 2 .
d A p d z = α eff 2 [ I 0 ( U M ) A p I 1 ( U M ) A d ] ,
d A d d z = α eff 2 [ I 0 ( U M ) A d I 1 ( U M ) A p ] ,

Metrics